System of Linear Equations in three variables using Cramer’s Rule
Cramer’s rule: In linear algebra, Cramer’s rule is an explicit formula for the solution of a system of linear equations with as many equations as unknown variables. It expresses the solution in terms of the determinants of the coefficient matrix and of matrices obtained from it by replacing one column by the column vector of the right-hand-sides of the equations. Cramer’s rule is computationally inefficient for systems of more than two or three equations.
Suppose we have to solve these equations:
a1x + b1y + c1z = d1 a2x + b2y + c2z = d2 a3x + b3y + c3z = d3
Following the Cramer’s Rule, first find the determinant values of all four matrices.
There are 2 cases:
- Case I : When D ≠ 0 In this case we have,
- x = D1/D
- y = D2/D
- z = D3/D
- Hence unique value of x, y, z will be obtained.
- Case II : When D = 0
- When at least one of D1, D2 and D3 is non zero: Then no solution is possible and hence system of equations will be inconsistent.
- When D = 0 and D1 = D2 = D3 = 0: Then the system of equations will be consistent and it will have infinitely many solutions.
Example:
Consider the following system of linear equations.
[2x – y + 3z = 9], [x + y + z = 6], [x – y + z = 2]
[Tex]D_1 = \begin{vmatrix} 9 & -1 & 3\\ 6 & 1 & 1\\ 2 & -1 & 1\\ \end{vmatrix} [/Tex]
[Tex]D_3 = \begin{vmatrix} 2 & -1 & 9\\ 1 & 1 & 6\\ 1 & -1 & 2\\ \end{vmatrix} [/Tex]
[x = D1/D = 1], [y = D2/D = 2], [z = D3/D = 3]
Below is the implementation.
C++
// CPP program to calculate solutions of linear // equations using cramer's rule #include <bits/stdc++.h> using namespace std; // This functions finds the determinant of Matrix double determinantOfMatrix( double mat[3][3]) { double ans; ans = mat[0][0] * (mat[1][1] * mat[2][2] - mat[2][1] * mat[1][2]) - mat[0][1] * (mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]); return ans; } // This function finds the solution of system of // linear equations using cramer's rule void findSolution( double coeff[3][4]) { // Matrix d using coeff as given in cramer's rule double d[3][3] = { { coeff[0][0], coeff[0][1], coeff[0][2] }, { coeff[1][0], coeff[1][1], coeff[1][2] }, { coeff[2][0], coeff[2][1], coeff[2][2] }, }; // Matrix d1 using coeff as given in cramer's rule double d1[3][3] = { { coeff[0][3], coeff[0][1], coeff[0][2] }, { coeff[1][3], coeff[1][1], coeff[1][2] }, { coeff[2][3], coeff[2][1], coeff[2][2] }, }; // Matrix d2 using coeff as given in cramer's rule double d2[3][3] = { { coeff[0][0], coeff[0][3], coeff[0][2] }, { coeff[1][0], coeff[1][3], coeff[1][2] }, { coeff[2][0], coeff[2][3], coeff[2][2] }, }; // Matrix d3 using coeff as given in cramer's rule double d3[3][3] = { { coeff[0][0], coeff[0][1], coeff[0][3] }, { coeff[1][0], coeff[1][1], coeff[1][3] }, { coeff[2][0], coeff[2][1], coeff[2][3] }, }; // Calculating Determinant of Matrices d, d1, d2, d3 double D = determinantOfMatrix(d); double D1 = determinantOfMatrix(d1); double D2 = determinantOfMatrix(d2); double D3 = determinantOfMatrix(d3); printf ( "D is : %lf \n" , D); printf ( "D1 is : %lf \n" , D1); printf ( "D2 is : %lf \n" , D2); printf ( "D3 is : %lf \n" , D3); // Case 1 if (D != 0) { // Coeff have a unique solution. Apply Cramer's Rule double x = D1 / D; double y = D2 / D; double z = D3 / D; // calculating z using cramer's rule printf ( "Value of x is : %lf\n" , x); printf ( "Value of y is : %lf\n" , y); printf ( "Value of z is : %lf\n" , z); } // Case 2 else { if (D1 == 0 && D2 == 0 && D3 == 0) printf ( "Infinite solutions\n" ); else if (D1 != 0 || D2 != 0 || D3 != 0) printf ( "No solutions\n" ); } } // Driver Code int main() { // storing coefficients of linear equations in coeff matrix double coeff[3][4] = { { 2, -1, 3, 9 }, { 1, 1, 1, 6 }, { 1, -1, 1, 2 }, }; findSolution(coeff); return 0; } |
Java
// Java program to calculate solutions of linear // equations using cramer's rule class GFG { // This functions finds the determinant of Matrix static double determinantOfMatrix( double mat[][]) { double ans; ans = mat[ 0 ][ 0 ] * (mat[ 1 ][ 1 ] * mat[ 2 ][ 2 ] - mat[ 2 ][ 1 ] * mat[ 1 ][ 2 ]) - mat[ 0 ][ 1 ] * (mat[ 1 ][ 0 ] * mat[ 2 ][ 2 ] - mat[ 1 ][ 2 ] * mat[ 2 ][ 0 ]) + mat[ 0 ][ 2 ] * (mat[ 1 ][ 0 ] * mat[ 2 ][ 1 ] - mat[ 1 ][ 1 ] * mat[ 2 ][ 0 ]); return ans; } // This function finds the solution of system of // linear equations using cramer's rule static void findSolution( double coeff[][]) { // Matrix d using coeff as given in cramer's rule double d[][] = { { coeff[ 0 ][ 0 ], coeff[ 0 ][ 1 ], coeff[ 0 ][ 2 ] }, { coeff[ 1 ][ 0 ], coeff[ 1 ][ 1 ], coeff[ 1 ][ 2 ] }, { coeff[ 2 ][ 0 ], coeff[ 2 ][ 1 ], coeff[ 2 ][ 2 ] }, }; // Matrix d1 using coeff as given in cramer's rule double d1[][] = { { coeff[ 0 ][ 3 ], coeff[ 0 ][ 1 ], coeff[ 0 ][ 2 ] }, { coeff[ 1 ][ 3 ], coeff[ 1 ][ 1 ], coeff[ 1 ][ 2 ] }, { coeff[ 2 ][ 3 ], coeff[ 2 ][ 1 ], coeff[ 2 ][ 2 ] }, }; // Matrix d2 using coeff as given in cramer's rule double d2[][] = { { coeff[ 0 ][ 0 ], coeff[ 0 ][ 3 ], coeff[ 0 ][ 2 ] }, { coeff[ 1 ][ 0 ], coeff[ 1 ][ 3 ], coeff[ 1 ][ 2 ] }, { coeff[ 2 ][ 0 ], coeff[ 2 ][ 3 ], coeff[ 2 ][ 2 ] }, }; // Matrix d3 using coeff as given in cramer's rule double d3[][] = { { coeff[ 0 ][ 0 ], coeff[ 0 ][ 1 ], coeff[ 0 ][ 3 ] }, { coeff[ 1 ][ 0 ], coeff[ 1 ][ 1 ], coeff[ 1 ][ 3 ] }, { coeff[ 2 ][ 0 ], coeff[ 2 ][ 1 ], coeff[ 2 ][ 3 ] }, }; // Calculating Determinant of Matrices d, d1, d2, d3 double D = determinantOfMatrix(d); double D1 = determinantOfMatrix(d1); double D2 = determinantOfMatrix(d2); double D3 = determinantOfMatrix(d3); System.out.printf( "D is : %.6f \n" , D); System.out.printf( "D1 is : %.6f \n" , D1); System.out.printf( "D2 is : %.6f \n" , D2); System.out.printf( "D3 is : %.6f \n" , D3); // Case 1 if (D != 0 ) { // Coeff have a unique solution. Apply Cramer's Rule double x = D1 / D; double y = D2 / D; double z = D3 / D; // calculating z using cramer's rule System.out.printf( "Value of x is : %.6f\n" , x); System.out.printf( "Value of y is : %.6f\n" , y); System.out.printf( "Value of z is : %.6f\n" , z); } // Case 2 else { if (D1 == 0 && D2 == 0 && D3 == 0 ) System.out.printf( "Infinite solutions\n" ); else if (D1 != 0 || D2 != 0 || D3 != 0 ) System.out.printf( "No solutions\n" ); } } // Driver Code public static void main(String[] args) { // storing coefficients of linear // equations in coeff matrix double coeff[][] = {{ 2 , - 1 , 3 , 9 }, { 1 , 1 , 1 , 6 }, { 1 , - 1 , 1 , 2 }}; findSolution(coeff); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program to calculate # solutions of linear equations # using cramer's rule # This functions finds the # determinant of Matrix def determinantOfMatrix(mat): ans = (mat[ 0 ][ 0 ] * (mat[ 1 ][ 1 ] * mat[ 2 ][ 2 ] - mat[ 2 ][ 1 ] * mat[ 1 ][ 2 ]) - mat[ 0 ][ 1 ] * (mat[ 1 ][ 0 ] * mat[ 2 ][ 2 ] - mat[ 1 ][ 2 ] * mat[ 2 ][ 0 ]) + mat[ 0 ][ 2 ] * (mat[ 1 ][ 0 ] * mat[ 2 ][ 1 ] - mat[ 1 ][ 1 ] * mat[ 2 ][ 0 ])) return ans # This function finds the solution of system of # linear equations using cramer's rule def findSolution(coeff): # Matrix d using coeff as given in # cramer's rule d = [[coeff[ 0 ][ 0 ], coeff[ 0 ][ 1 ], coeff[ 0 ][ 2 ]], [coeff[ 1 ][ 0 ], coeff[ 1 ][ 1 ], coeff[ 1 ][ 2 ]], [coeff[ 2 ][ 0 ], coeff[ 2 ][ 1 ], coeff[ 2 ][ 2 ]]] # Matrix d1 using coeff as given in # cramer's rule d1 = [[coeff[ 0 ][ 3 ], coeff[ 0 ][ 1 ], coeff[ 0 ][ 2 ]], [coeff[ 1 ][ 3 ], coeff[ 1 ][ 1 ], coeff[ 1 ][ 2 ]], [coeff[ 2 ][ 3 ], coeff[ 2 ][ 1 ], coeff[ 2 ][ 2 ]]] # Matrix d2 using coeff as given in # cramer's rule d2 = [[coeff[ 0 ][ 0 ], coeff[ 0 ][ 3 ], coeff[ 0 ][ 2 ]], [coeff[ 1 ][ 0 ], coeff[ 1 ][ 3 ], coeff[ 1 ][ 2 ]], [coeff[ 2 ][ 0 ], coeff[ 2 ][ 3 ], coeff[ 2 ][ 2 ]]] # Matrix d3 using coeff as given in # cramer's rule d3 = [[coeff[ 0 ][ 0 ], coeff[ 0 ][ 1 ], coeff[ 0 ][ 3 ]], [coeff[ 1 ][ 0 ], coeff[ 1 ][ 1 ], coeff[ 1 ][ 3 ]], [coeff[ 2 ][ 0 ], coeff[ 2 ][ 1 ], coeff[ 2 ][ 3 ]]] # Calculating Determinant of Matrices # d, d1, d2, d3 D = determinantOfMatrix(d) D1 = determinantOfMatrix(d1) D2 = determinantOfMatrix(d2) D3 = determinantOfMatrix(d3) print ( "D is : " , D) print ( "D1 is : " , D1) print ( "D2 is : " , D2) print ( "D3 is : " , D3) # Case 1 if (D ! = 0 ): # Coeff have a unique solution. # Apply Cramer's Rule x = D1 / D y = D2 / D # calculating z using cramer's rule z = D3 / D print ( "Value of x is : " , x) print ( "Value of y is : " , y) print ( "Value of z is : " , z) # Case 2 else : if (D1 = = 0 and D2 = = 0 and D3 = = 0 ): print ( "Infinite solutions" ) elif (D1 ! = 0 or D2 ! = 0 or D3 ! = 0 ): print ( "No solutions" ) # Driver Code if __name__ = = "__main__" : # storing coefficients of linear # equations in coeff matrix coeff = [[ 2 , - 1 , 3 , 9 ], [ 1 , 1 , 1 , 6 ], [ 1 , - 1 , 1 , 2 ]] findSolution(coeff) # This code is contributed by Chitranayal |
C#
// C# program to calculate solutions of linear // equations using cramer's rule using System; class GFG { // This functions finds the determinant of Matrix static double determinantOfMatrix( double [,]mat) { double ans; ans = mat[0,0] * (mat[1,1] * mat[2,2] - mat[2,1] * mat[1,2]) - mat[0,1] * (mat[1,0] * mat[2,2] - mat[1,2] * mat[2,0]) + mat[0,2] * (mat[1,0] * mat[2,1] - mat[1,1] * mat[2,0]); return ans; } // This function finds the solution of system of // linear equations using cramer's rule static void findSolution( double [,]coeff) { // Matrix d using coeff as given in cramer's rule double [,]d = { { coeff[0,0], coeff[0,1], coeff[0,2] }, { coeff[1,0], coeff[1,1], coeff[1,2] }, { coeff[2,0], coeff[2,1], coeff[2,2] }, }; // Matrix d1 using coeff as given in cramer's rule double [,]d1 = { { coeff[0,3], coeff[0,1], coeff[0,2] }, { coeff[1,3], coeff[1,1], coeff[1,2] }, { coeff[2,3], coeff[2,1], coeff[2,2] }, }; // Matrix d2 using coeff as given in cramer's rule double [,]d2 = { { coeff[0,0], coeff[0,3], coeff[0,2] }, { coeff[1,0], coeff[1,3], coeff[1,2] }, { coeff[2,0], coeff[2,3], coeff[2,2] }, }; // Matrix d3 using coeff as given in cramer's rule double [,]d3 = { { coeff[0,0], coeff[0,1], coeff[0,3] }, { coeff[1,0], coeff[1,1], coeff[1,3] }, { coeff[2,0], coeff[2,1], coeff[2,3] }, }; // Calculating Determinant of Matrices d, d1, d2, d3 double D = determinantOfMatrix(d); double D1 = determinantOfMatrix(d1); double D2 = determinantOfMatrix(d2); double D3 = determinantOfMatrix(d3); Console.Write( "D is : {0:F6} \n" , D); Console.Write( "D1 is : {0:F6} \n" , D1); Console.Write( "D2 is : {0:F6} \n" , D2); Console.Write( "D3 is : {0:F6} \n" , D3); // Case 1 if (D != 0) { // Coeff have a unique solution. Apply Cramer's Rule double x = D1 / D; double y = D2 / D; double z = D3 / D; // calculating z using cramer's rule Console.Write( "Value of x is : {0:F6}\n" , x); Console.Write( "Value of y is : {0:F6}\n" , y); Console.Write( "Value of z is : {0:F6}\n" , z); } // Case 2 else { if (D1 == 0 && D2 == 0 && D3 == 0) Console.Write( "Infinite solutions\n" ); else if (D1 != 0 || D2 != 0 || D3 != 0) Console.Write( "No solutions\n" ); } } // Driver Code public static void Main() { // storing coefficients of linear // equations in coeff matrix double [,]coeff = {{ 2, -1, 3, 9 }, { 1, 1, 1, 6 }, { 1, -1, 1, 2 }}; findSolution(coeff); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript program to calculate solutions of linear // equations using cramer's rule // This functions finds the determinant of Matrix function determinantOfMatrix(mat) { let ans; ans = mat[0][0] * (mat[1][1] * mat[2][2] - mat[2][1] * mat[1][2]) - mat[0][1] * (mat[1][0] * mat[2][2] - mat[1][2] * mat[2][0]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0]); return ans; } // This function finds the solution of system of // linear equations using cramer's rule function findSolution(coeff) { // Matrix d using coeff as given in cramer's rule let d = [[coeff[0][0], coeff[0][1], coeff[0][2]], [coeff[1][0], coeff[1][1], coeff[1][2]], [coeff[2][0], coeff[2][1], coeff[2][2]]]; // Matrix d1 using coeff as given in cramer's rule let d1 = [[coeff[0][3], coeff[0][1], coeff[0][2]], [coeff[1][3], coeff[1][1], coeff[1][2]], [coeff[2][3], coeff[2][1], coeff[2][2]]]; // Matrix d2 using coeff as given in cramer's rule let d2 = [[coeff[0][0], coeff[0][3], coeff[0][2]], [coeff[1][0], coeff[1][3], coeff[1][2]], [coeff[2][0], coeff[2][3], coeff[2][2]]]; // Matrix d3 using coeff as given in cramer's rule let d3 = [[coeff[0][0], coeff[0][1], coeff[0][3]], [coeff[1][0], coeff[1][1], coeff[1][3]], [coeff[2][0], coeff[2][1], coeff[2][3]]]; // Calculating Determinant of Matrices d, d1, d2, d3 let D = determinantOfMatrix(d); let D1 = determinantOfMatrix(d1); let D2 = determinantOfMatrix(d2); let D3 = determinantOfMatrix(d3); document.write( "D is : " , D.toFixed(6)+ "<br>" ); document.write( "D1 is : " , D1.toFixed(6)+ "<br>" ); document.write( "D2 is : " , D2.toFixed(6)+ "<br>" ); document.write( "D3 is : " , D3.toFixed(6)+ "<br>" ); // Case 1 if (D != 0) { // Coeff have a unique solution. Apply Cramer's Rule let x = D1 / D; let y = D2 / D; let z = D3 / D; // calculating z using cramer's rule document.write( "Value of x is : " , x.toFixed(6)+ "<br>" ); document.write( "Value of y is : " , y.toFixed(6)+ "<br>" ); document.write( "Value of z is : " , z.toFixed(6)+ "<br>" ); } // Case 2 else { if (D1 == 0 && D2 == 0 && D3 == 0) document.write( "Infinite solutions\n" ); else if (D1 != 0 || D2 != 0 || D3 != 0) document.write( "No solutions\n" ); } } // Driver Code let coeff = [[2, -1, 3, 9], [1, 1, 1, 6], [1, -1, 1, 2]] findSolution(coeff); // This code is contributed by avanitrachhadiya2155 </script> |
D is : -2.000000 D1 is : -2.000000 D2 is : -4.000000 D3 is : -6.000000 Value of x is : 1.000000 Value of y is : 2.000000 Value of z is : 3.000000
Time complexity: O(1)
Auxiliary space: O(1)
Please Login to comment...