Python | Mean Squared Error

The Mean Squared Error (MSE) or Mean Squared Deviation (MSD) of an estimator measures the average of error squares i.e. the average squared difference between the estimated values and true value. It is a risk function, corresponding to the expected value of the squared error loss. It is always non – negative and values close to zero are better. The MSE is the second moment of the error (about the origin) and thus incorporates both the variance of the estimator and its bias.

Steps to find the MSE

  1. Find the equation for the regression line.

    (1)      \begin{equation*}   \hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\epsilon}_i   \end{equation*}



  2. Insert X values in the equation found in step 1 in order to get the respective Y values i.e.

    (2)    \begin{equation*} \hat{Y}_i \end{equation*}

  3. Now subtract the new Y values (i.e. \hat{Y}_i) from the original Y values. Thus, found values are the error terms. It is also known as the vertical distance of the given point from the regression line.

    (3)     \begin{equation*}  Y_i - \hat{Y}_i  \end{equation*}

  4. Square the errors found in step 3.

    (4)     \begin{equation*}  {(Y_i - \hat{Y}_i)}^2  \end{equation*}

  5. Sum up all the squares.

    (5)     \begin{equation*}  \sum_{i=1}^{N}(Y_i - \hat{Y}_i)^2  \end{equation*}

  6. Divide the value found in step 5 by the total number of observations.

    (6)     \begin{equation*}  MSE = \frac{1}{N}\sum_{i=1}^{N}(Y_i - \hat{Y}_i)^2  \end{equation*}

Example:
Consider the given data points: (1,1), (2,1), (3,2), (4,2), (5,4)
You can use this online calculator to find the regression equation / line.

Regression line equation: Y = 0.7X – 0.1

X Y \hat{Y}_i
1 1 0.6
2 1 1.29
3 2 1.99
4 2 2.69
5 4 3.4

Now, using formula found for MSE in step 6 above, we can get MSE = 0.21606

MSE using scikit – learn:

filter_none

edit
close

play_arrow

link
brightness_4
code

from sklearn.metrics import mean_squared_error
  
# Given values
Y_true = [1,1,2,2,4# Y_true = Y (original values)
  
# calculated values
Y_pred = [0.6,1.29,1.99,2.69,3.4# Y_pred = Y'
  
# Calculation of Mean Squared Error (MSE)
mean_squared_error(Y_true,Y_pred)

chevron_right


Output: 0.21606

MSE using Numpy module:

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
  
# Given values
Y_true = [1,1,2,2,4# Y_true = Y (original values)
  
# Calculated values
Y_pred = [0.6,1.29,1.99,2.69,3.4# Y_pred = Y'
  
# Mean Squared Error
MSE = np.square(np.subtract(Y_true,Y_pred)).mean()

chevron_right


Output: 0.21606


My Personal Notes arrow_drop_up

Possess good Mathematical and Statistical Foundation Learning Data Science and Machine Learning Interested in Mathematical and Statistical Analysis

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.