# Find root of a number using Newton’s method

• Difficulty Level : Hard
• Last Updated : 10 Jun, 2021

Given an integer N and a tolerance level L, the task is to find the square root of that number using Newton’s Method.
Examples:

Input: N = 16, L = 0.0001
Output:
42 = 16
Input: N = 327, L = 0.00001
Output: 18.0831

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Newton’s Method:
Let N be any number then the square root of N can be given by the formula:

root = 0.5 * (X + (N / X)) where X is any guess which can be assumed to be N or 1.

• In the above formula, X is any assumed square root of N and root is the correct square root of N.
• Tolerance limit is the maximum difference between X and root allowed.

Approach: The following steps can be followed to compute the answer:

1. Assign X to the N itself.
2. Now, start a loop and keep calculating the root which will surely move towards the correct square root of N.
3. Check for the difference between the assumed X and calculated root, if not yet inside tolerance then update root and continue.
4. If the calculated root comes inside the tolerance allowed then break out of the loop.
5. Print the root.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the square root of``// a number using Newtons method``double` `squareRoot(``double` `n, ``float` `l)``{``    ``// Assuming the sqrt of n as n only``    ``double` `x = n;` `    ``// The closed guess will be stored in the root``    ``double` `root;` `    ``// To count the number of iterations``    ``int` `count = 0;` `    ``while` `(1) {``        ``count++;` `        ``// Calculate more closed x``        ``root = 0.5 * (x + (n / x));` `        ``// Check for closeness``        ``if` `(``abs``(root - x) < l)``            ``break``;` `        ``// Update root``        ``x = root;``    ``}` `    ``return` `root;``}` `// Driver code``int` `main()``{``    ``double` `n = 327;``    ``float` `l = 0.00001;` `    ``cout << squareRoot(n, l);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ` `    ``// Function to return the square root of``    ``// a number using Newtons method``    ``static` `double` `squareRoot(``double` `n, ``double` `l)``    ``{``        ``// Assuming the sqrt of n as n only``        ``double` `x = n;``    ` `        ``// The closed guess will be stored in the root``        ``double` `root;``    ` `        ``// To count the number of iterations``        ``int` `count = ``0``;``    ` `        ``while` `(``true``)``        ``{``            ``count++;``    ` `            ``// Calculate more closed x``            ``root = ``0.5` `* (x + (n / x));``    ` `            ``// Check for closeness``            ``if` `(Math.abs(root - x) < l)``                ``break``;``    ` `            ``// Update root``            ``x = root;``        ``}``    ` `        ``return` `root;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``double` `n = ``327``;``        ``double` `l = ``0.00001``;``    ` `        ``System.out.println(squareRoot(n, l));``    ``}``}` `// This code is contributed by AnkitRai01`

## Python3

 `# Python3 implementation of the approach` `# Function to return the square root of``# a number using Newtons method``def` `squareRoot(n, l) :` `    ``# Assuming the sqrt of n as n only``    ``x ``=` `n` `    ``# To count the number of iterations``    ``count ``=` `0` `    ``while` `(``1``) :``        ``count ``+``=` `1` `        ``# Calculate more closed x``        ``root ``=` `0.5` `*` `(x ``+` `(n ``/` `x))` `        ``# Check for closeness``        ``if` `(``abs``(root ``-` `x) < l) :``            ``break` `        ``# Update root``        ``x ``=` `root` `    ``return` `root` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``n ``=` `327``    ``l ``=` `0.00001` `    ``print``(squareRoot(n, l))` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `    ``// Function to return the square root of``    ``// a number using Newtons method``    ``static` `double` `squareRoot(``double` `n, ``double` `l)``    ``{``        ``// Assuming the sqrt of n as n only``        ``double` `x = n;``    ` `        ``// The closed guess will be stored in the root``        ``double` `root;``    ` `        ``// To count the number of iterations``        ``int` `count = 0;``    ` `        ``while` `(``true``)``        ``{``            ``count++;``    ` `            ``// Calculate more closed x``            ``root = 0.5 * (x + (n / x));``    ` `            ``// Check for closeness``            ``if` `(Math.Abs(root - x) < l)``                ``break``;``    ` `            ``// Update root``            ``x = root;``        ``}``    ` `        ``return` `root;``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``double` `n = 327;``        ``double` `l = 0.00001;``    ` `        ``Console.WriteLine(squareRoot(n, l));``    ``}``}` `// This code is contributed by AnkitRai01`

## Javascript

 ``
Output:
`18.0831`

My Personal Notes arrow_drop_up