Determine whether a universal sink exists in a directed graph

Determine whether a universal sink exists in a directed graph. A universal sink is a vertex which has no edge emanating from it, and all other vertices have an edge towards the sink.

Input : 
v1 -> v2 (implies vertex 1 is connected to vertex 2)
v3 -> v2
v4 -> v2
v5 -> v2
v6 -> v2                        
Output :
Sink found at vertex 2

Input : 
v1 -> v6
v2 -> v3
v2 -> v4
v4 -> v3
v5 -> v3
Output :
No Sink

We try to eliminate n – 1 non-sink vertices in O(n) time and check the remaining vertex for the sink property.
To eliminate vertices, we check whether a particular index (A[i][j]) in the adjacency matrix is a 1 or a 0. If it is a 0, it means that the vertex corresponding to index j cannot be a sink. If the index is a 1, it means the vertex corresponding to i cannot be a sink. We keep increasing i and j in this fashion until either i or j exceeds the number of vertices.
Using this method allows us to carry out the universal sink test for only one vertex instead of all n vertices. Suppose we are left with only vertex i.
We now check for whether row i has only 0s and whether row j as only 1s except for A[i][i], which will be 0.

Illustration :



v1 -> v2 
v3 -> v2
v4 -> v2
v5 -> v2
v6 -> v2                     
We can visualize the adjacency matrix for 
the above as follows:
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 

We observe that vertex 2 does not have any emanating edge, and that every other vertex has an edge in vertex 2. At A[0][0] (A[i][j]), we encounter a 0, so we increment j and next
look at A[0][1]. Here we encounter a 1. So we have to increment i by 1. A[1][1] is 0, so we keep increasing j. We notice that A[1][2], A[1][3].. etc are all 0, so j will exceed the
number of vertices (6 in this example). We now check row i and column i for the sink property. Row i must be completely 0, and column i must be completely 1 except for the index A[i][i]

Adjacency Matrix

Adjacency Matrix

Second Example:

v1 -> v6
v2 -> v3
v2 -> v4
v4 -> v3
v5 -> v3
We can visualize the adjacency matrix
for the above as follows:
0 0 0 0 0 1
0 0 1 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

In this example, we observer that in row 1, every element is 0 except for the last column. So we will increment j until we reach the 1. When we reach 1, we increment i as long as
the value of A[i][j] is 0. If i exceeds the number of vertices, it is not possible to have a sink, and in this case, i will exceed the number of vertices.

Adjacency Matrix

Adjacency Matrix

Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find whether a universal sink
// exists in a directed graph
import java.io.*;
import java.util.*;
  
class Graph
{
    int vertices;
    int[][] adjacency_matrix;
  
    // constructor to initialize number of vertices and
    // size of adjacency matrix
    public graph(int vertices)
    {
        this.vertices = vertices;
        adjacency_matrix = new int[vertices][vertices];
    }
  
    public void insert(int source, int destination)
    {
        // make adjacency_matrix[i][j] = 1 if there is
        // an edge from i to j
        adjacency_matrix[destination-1] = 1;
    }
  
    public boolean issink(int i)
    {
        for (int j = 0 ; j < vertices ; j++)
        {
            // if any element in the row i is 1, it means
            // that there is an edge emanating from the
            // vertex, which means it cannot be a sink
            if (adjacency_matrix[i][j] == 1)
                return false;
  
            // if any element other than i in the column
            // i is 0, it means that there is no edge from
            // that vertex to the vertex we are testing
            // and hence it cannot be a sink
            if (adjacency_matrix[j][i] == 0 && j != i)
                return false;
        }
        //if none of the checks fails, return true
        return true;
    }
  
    // we will eliminate n-1 non sink vertices so that
    // we have to check for only one vertex instead of
    // all n vertices
    public int eliminate()
    {
        int i = 0, j = 0;
        while (i < vertices && j < vertices)
        {
            // If the index is 1, increment the row we are
            // checking by 1
            // else increment the column
            if (adjacency_matrix[i][j] == 1)
                i = i + 1;
            else
                j = j + 1;
  
        }
  
        // If i exceeds the number of vertices, it
        // means that there is no valid vertex in
        // the given vertices that can be a sink
        if (i > vertices)
            return -1;
        else if (!issink(i))
            return -1;
        else return i;
    }
}
  
public class Sink
{
    public static void main(String[] args)throws IOException
    {
        int number_of_vertices = 6;
        int number_of_edges = 5;
        graph g = new graph(number_of_vertices);
        /*
        //input set 1
        g.insert(1, 6);
        g.insert(2, 6);
        g.insert(3, 6);
        g.insert(4, 6);
        g.insert(5, 6);
        */
        //input set 2
        g.insert(1, 6);
        g.insert(2, 3);
        g.insert(2, 4);
        g.insert(4, 3);
        g.insert(5, 3);
  
        int vertex = g.eliminate();
  
        // returns 0 based indexing of vertex. returns
        // -1 if no sink exits.
        // returns the vertex number-1 if sink is found
        if (vertex >= 0)
            System.out.println("Sink found at vertex "
                                     + (vertex + 1));
        else
            System.out.println("No Sink");
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find whether a 
# universal sink exists in a directed graph
class Graph:
  
    # constructor to initialize number of 
    # vertices and size of adjacency matrix
    def __init__(self, vertices):
        self.vertices = vertices
        self.adjacency_matrix = [[0 for i in range(vertices)]
                                    for j in range(vertices)]
  
    def insert(self, s, destination):
  
        # make adjacency_matrix[i][j] = 1 
        # if there is an edge from i to j
        self.adjacency_matrix[s - 1][destination - 1] = 1
  
    def issink(self, i):
        for j in range(self.vertices):
  
            # if any element in the row i is 1, it means
            # that there is an edge emanating from the
            # vertex, which means it cannot be a sink
            if self.adjacency_matrix[i][j] == 1:
                return False
  
            # if any element other than i in the column
            # i is 0, it means that there is no edge from
            # that vertex to the vertex we are testing
            # and hence it cannot be a sink
            if self.adjacency_matrix[j][i] == 0 and j != i:
                return False
  
        # if none of the checks fails, return true
        return True
  
    # we will eliminate n-1 non sink vertices so that
    # we have to check for only one vertex instead of
    # all n vertices
    def eliminate(self):
        i = 0
        j = 0
        while i < self.vertices and j < self.vertices:
  
            # If the index is 1, increment the row 
            # we are checking by 1
            # else increment the column
            if self.adjacency_matrix[i][j] == 1:
                i += 1
            else:
                j += 1
  
        # If i exceeds the number of vertices, it
        # means that there is no valid vertex in
        # the given vertices that can be a sink
        if i > self.vertices:
            return -1
        elif self.issink(i) is False:
            return -1
        else:
            return i
  
# Driver Code
if __name__ == "__main__":
  
    number_of_vertices = 6
    number_of_edges = 5
    g = Graph(number_of_vertices)
  
    # input set 1
    # g.insert(1, 6)
    # g.insert(2, 6)
    # g.insert(3, 6)
    # g.insert(4, 6)
    # g.insert(5, 6)
      
    # input set 2
    g.insert(1, 6)
    g.insert(2, 3)
    g.insert(2, 4)
    g.insert(4, 3)
    g.insert(5, 3)
  
    vertex = g.eliminate()
  
    # returns 0 based indexing of vertex. 
    # returns -1 if no sink exits.
    # returns the vertex number-1 if sink is found
    if vertex >= 0:
        print("Sink found at vertex %d" % (vertex + 1))
    else:
        print("No Sink")
  
# This code is contributed by
# sanjeev2552

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find whether a universal sink 
// exists in a directed graph 
using System;
using System.Collections.Generic;
  
class graph 
    int vertices, itr; 
    int[,] adjacency_matrix; 
  
    // constructor to initialize number of vertices and 
    // size of adjacency matrix 
    public graph(int vertices) 
    
        this.vertices = vertices; 
        adjacency_matrix = new int[vertices, vertices]; 
    
  
    public void insert(int source, int destination) 
    
        // make adjacency_matrix[i,j] = 1 if there is 
        // an edge from i to j 
        adjacency_matrix = 1; 
    
  
    public bool issink(int i) 
    
        for (int j = 0 ; j < vertices ; j++) 
        
            // if any element in the row i is 1, it means 
            // that there is an edge emanating from the 
            // vertex, which means it cannot be a sink 
            if (adjacency_matrix[i, j] == 1) 
                return false
  
            // if any element other than i in the column 
            // i is 0, it means that there is no edge from 
            // that vertex to the vertex we are testing 
            // and hence it cannot be a sink 
            if (adjacency_matrix[j, i] == 0 && j != i) 
                return false
        
        //if none of the checks fails, return true 
        return true
    
  
    // we will eliminate n-1 non sink vertices so that 
    // we have to check for only one vertex instead of 
    // all n vertices 
    public int eliminate() 
    
        int i = 0, j = 0; 
        while (i < vertices && j < vertices) 
        
            // If the index is 1, increment the row we are 
            // checking by 1 
            // else increment the column 
            if (adjacency_matrix[i, j] == 1) 
                i = i + 1; 
            else
                j = j + 1; 
  
        
  
        // If i exceeds the number of vertices, it 
        // means that there is no valid vertex in 
        // the given vertices that can be a sink 
        if (i > vertices) 
            return -1; 
        else if (!issink(i)) 
            return -1; 
        else return i; 
    
  
public class Sink 
    public static void Main(String[] args)
    
        int number_of_vertices = 6; 
        graph g = new graph(number_of_vertices); 
        /* 
        //input set 1 
        g.insert(1, 6); 
        g.insert(2, 6); 
        g.insert(3, 6); 
        g.insert(4, 6); 
        g.insert(5, 6); 
        */
        //input set 2 
        g.insert(1, 6); 
        g.insert(2, 3); 
        g.insert(2, 4); 
        g.insert(4, 3); 
        g.insert(5, 3); 
  
        int vertex = g.eliminate(); 
  
        // returns 0 based indexing of vertex. returns 
        // -1 if no sink exits. 
        // returns the vertex number-1 if sink is found 
        if (vertex >= 0) 
            Console.WriteLine("Sink found at vertex "
                                    + (vertex + 1)); 
        else
            Console.WriteLine("No Sink"); 
    
  
// This code is contributed by Rajput-Ji

chevron_right



Output:

input set 1: 
Sink found at vertex 6
input set 2:
No Sink

This program eliminates non-sink vertices in O(n) complexity and checks for the sink property in O(n) complexity.

You may also try The Celebrity Problem, which is an application of this concept

This article is contributed by Deepak Srivatsav. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details




My Personal Notes arrow_drop_up

Improved By : sanjeev2552, Rajput-Ji

Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.