Maximum edges that can be added to DAG so that it remains DAG
A DAG is given to us, we need to find maximum number of edges that can be added to this DAG, after which new graph still remain a DAG that means the reformed graph should have maximal number of edges, adding even single edge will create a cycle in graph.
The Output for above example should be following edges in any order. 4-2, 4-5, 4-3, 5-3, 5-1, 2-0, 2-1, 0-3, 0-1
As shown in above example, we have added all the edges in one direction only to save ourselves from making a cycle. This is the trick to solve this question. We sort all our nodes in topological order and create edges from node to all nodes to the right if not there already.
How can we say that, it is not possible to add any more edge? the reason is we have added all possible edges from left to right and if we want to add more edge we need to make that from right to left, but adding edge from right to left we surely create a cycle because its counter part left to right edge is already been added to graph and creating cycle is not what we needed.
So solution proceeds as follows, we consider the nodes in topological order and if any edge is not there from left to right, we will create it.
Below is the solution, we have printed all the edges that can be added to given DAG without making any cycle.
C++
// C++ program to find maximum edges after adding // which graph still remains a DAG #include <bits/stdc++.h> using namespace std; class Graph { int V; // No. of vertices // Pointer to a list containing adjacency list list< int >* adj; // Vector to store indegree of vertices vector< int > indegree; // function returns a topological sort vector< int > topologicalSort(); public : Graph( int V); // Constructor // function to add an edge to graph void addEdge( int v, int w); // Prints all edges that can be added without making any // cycle void maximumEdgeAddition(); }; // Constructor of graph Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; // Initialising all indegree with 0 for ( int i = 0; i < V; i++) indegree.push_back(0); } // Utility function to add edge void Graph::addEdge( int v, int w) { adj[v].push_back(w); // Add w to v's list. // increasing inner degree of w by 1 indegree[w]++; } // Main function to print maximum edges that can be added vector< int > Graph::topologicalSort() { vector< int > topological; queue< int > q; // In starting push all node with indegree 0 for ( int i = 0; i < V; i++) if (indegree[i] == 0) q.push(i); while (!q.empty()) { int t = q.front(); q.pop(); // push the node into topological vector topological.push_back(t); // reducing indegree of adjacent vertices for (list< int >::iterator j = adj[t].begin(); j != adj[t].end(); j++) { indegree[*j]--; // if indegree becomes 0, just push // into queue if (indegree[*j] == 0) q.push(*j); } } return topological; } // The function prints all edges that can be // added without making any cycle // It uses recursive topologicalSort() void Graph::maximumEdgeAddition() { bool * visited = new bool [V]; vector< int > topo = topologicalSort(); // looping for all nodes for ( int i = 0; i < topo.size(); i++) { int t = topo[i]; // In below loop we mark the adjacent node of t for (list< int >::iterator j = adj[t].begin(); j != adj[t].end(); j++) visited[*j] = true ; // In below loop unmarked nodes are printed for ( int j = i + 1; j < topo.size(); j++) { // if not marked, then we can make an edge // between t and j if (!visited[topo[j]]) cout << t << "-" << topo[j] << " " ; visited[topo[j]] = false ; } } } // Driver code to test above methods int main() { // Create a graph given in the above diagram Graph g(6); g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); g.maximumEdgeAddition(); return 0; } |
Java
// Java program to find maximum edges after adding // which graph still remains a DAG import java.util.*; public class Graph { int V; // No. of vertices ArrayList<ArrayList<Integer>> adj; // adjacency list // array to store indegree of vertices int [] indegree; // Constructor of graph Graph( int v) { this .V = v; indegree = new int [V]; adj = new ArrayList<>(V); for ( int i = 0 ; i < V; i++) { adj.add( new ArrayList<Integer>()); indegree[i] = 0 ; } } // Utility function to add edge public void addEdge( int v, int w) { adj.get(v).add(w); // Add w to v's list. // increasing inner degree of w by 1 indegree[w]++; } // Main function to print maximum edges that can be added public List<Integer> topologicalSort() { List<Integer> topological = new ArrayList<>(V); Queue<Integer> q = new LinkedList<>(); // In starting push all node with indegree 0 for ( int i = 0 ; i < V; i++) { if (indegree[i] == 0 ) { q.add(i); } } while (!q.isEmpty()) { int t=q.poll(); // push the node into topological list topological.add(t); // reducing inDegree of adjacent vertical for ( int j: adj.get(t)) { indegree[j]--; // if inDegree becomes 0, just push // into queue if (indegree[j] == 0 ) { q.add(j); } } } return topological; } // The function prints all edges that can be // added without making any cycle // It uses recursive topologicalSort() public void maximumEdgeAddition() { boolean [] visited = new boolean [V]; List<Integer> topo=topologicalSort(); // looping for all nodes for ( int i = 0 ; i < topo.size(); i++) { int t = topo.get(i); // In below loop we mark the adjacent node of t for ( Iterator<Integer> j = adj.get(t).listIterator();j.hasNext();) { visited[j.next()] = true ; } for ( int j = i + 1 ; j < topo.size(); j++) { // if not marked, then we can make an edge // between t and j if (!visited[topo.get(j)]) { System.out.print( t + "-" + topo.get(j) + " " ); } visited[topo.get(j)] = false ; } } } // Driver code to test above methods public static void main(String[] args) { // Create a graph given in the above diagram Graph g = new Graph( 6 ); g.addEdge( 5 , 2 ); g.addEdge( 5 , 0 ); g.addEdge( 4 , 0 ); g.addEdge( 4 , 1 ); g.addEdge( 2 , 3 ); g.addEdge( 3 , 1 ); g.maximumEdgeAddition(); return ; } } // This code is contributed by sameergupta22. |
Python3
# Python3 program to find maximum # edges after adding which graph # still remains a DAG class Graph: def __init__( self , V): # No. of vertices self .V = V # Pointer to a list containing # adjacency list self .adj = [[] for i in range (V)] # Vector to store indegree of vertices self .indegree = [ 0 for i in range (V)] # Utility function to add edge def addEdge( self , v, w): # Add w to v's list. self .adj[v].append(w) # Increasing inner degree of w by 1 self .indegree[w] + = 1 # Main function to print maximum # edges that can be added def topologicalSort( self ): topological = [] q = [] # In starting append all node # with indegree 0 for i in range ( self .V): if ( self .indegree[i] = = 0 ): q.append(i) while ( len (q) ! = 0 ): t = q[ 0 ] q.pop( 0 ) # Append the node into topological # vector topological.append(t) # Reducing indegree of adjacent # vertices for j in self .adj[t]: self .indegree[j] - = 1 # If indegree becomes 0, just # append into queue if ( self .indegree[j] = = 0 ): q.append(j) return topological # The function prints all edges that # can be added without making any cycle # It uses recursive topologicalSort() def maximumEdgeAddition( self ): visited = [ False for i in range ( self .V)] topo = self .topologicalSort() # Looping for all nodes for i in range ( len (topo)): t = topo[i] # In below loop we mark the # adjacent node of t for j in self .adj[t]: visited[j] = True # In below loop unmarked nodes # are printed for j in range (i + 1 , len (topo)): # If not marked, then we can make # an edge between t and j if ( not visited[topo[j]]): print ( str (t) + '-' + str (topo[j]), end = ' ' ) visited[topo[j]] = False # Driver code if __name__ = = '__main__' : # Create a graph given in the # above diagram g = Graph( 6 ) g.addEdge( 5 , 2 ) g.addEdge( 5 , 0 ) g.addEdge( 4 , 0 ) g.addEdge( 4 , 1 ) g.addEdge( 2 , 3 ) g.addEdge( 3 , 1 ) g.maximumEdgeAddition() # This code is contributed by rutvik_56 |
C#
// C# program to find maximum edges after Adding // which graph still remains a DAG using System; using System.Collections.Generic; public class Graph { private int V; // No. of vertices private List< int >[] adj; // adjacency list // array to store indegree of vertices private int [] indegree; // Constructor of graph public Graph( int v) { V = v; indegree = new int [V]; adj = new List< int >[ V ]; for ( int i = 0; i < V; i++) { adj[i] = new List< int >(); indegree[i] = 0; } } // Utility function to Add edge public void AddEdge( int v, int w) { adj[v].Add(w); // Add w to v's list. // increasing inner degree of w by 1 indegree[w]++; } // function to print maximum edges that can be Added public List< int > TopologicalSort() { List< int > topological = new List< int >(); Queue< int > q = new Queue< int >(); // In starting push all node with indegree 0 for ( int i = 0; i < V; i++) { if (indegree[i] == 0) { q.Enqueue(i); } } while (q.Count > 0) { int t = q.Dequeue(); // push the node into topological list topological.Add(t); // reducing inDegree of adjacent vertical foreach ( int j in adj[t]) { indegree[j]--; // if inDegree becomes 0, just push // into queue if (indegree[j] == 0) { q.Enqueue(j); } } } return topological; } // The function prints all edges that can be // Added without making any cycle // It uses recursive topologicalSort() public void MaximumEdgeAddition() { bool [] visited = new bool [V]; List< int > topo = TopologicalSort(); // looping for all nodes for ( int i = 0; i < topo.Count; i++) { int t = topo[i]; // In below loop we mark the adjacent node of t foreach ( int j in adj[t]) { visited[j] = true ; } for ( int j = i + 1; j < topo.Count; j++) { // if not marked, then we can make an edge // between t and j if (!visited[topo[j]]) { Console.Write(t + "-" + topo[j] + " " ); } visited[topo[j]] = false ; } } Console.WriteLine(); } // Driver code to test above methods static void Main( string [] args) { // Create a graph given in the above diagram Graph g = new Graph(6); g.AddEdge(5, 2); g.AddEdge(5, 0); g.AddEdge(4, 0); g.AddEdge(4, 1); g.AddEdge(2, 3); g.AddEdge(3, 1); g.MaximumEdgeAddition(); } } // This code is contributed by cavi4762. |
Javascript
// javascript program to find maximum // edges after adding which graph // still remains a DAG class Graph{ constructor(V){ // No. of vertices this .V = V // Pointer to a list containing // adjacency list this .adj = new Array(V); for (let i = 0; i < V; i++){ this .adj[i] = new Array(); } // Vector to store indegree of vertices this .indegree = new Array(V).fill(0); } // Utility function to add edge addEdge(v, w){ // Add w to v's list. this .adj[v].push(w) // Increasing inner degree of w by 1 this .indegree[w] += 1 } // Main function to print maximum // edges that can be added topologicalSort(){ let topological = new Array(); let q = new Array(); // In starting append all node // with indegree 0 for (let i= 0; i < this .V; i++){ if ( this .indegree[i] == 0){ q.push(i); } } while (q.length != 0){ let t = q[0]; q.shift(); // Append the node into topological // vector topological.push(t) // Reducing indegree of adjacent // vertices for (let indx = 0; indx < this .adj[t].length; indx++){ let j = this .adj[t][indx]; this .indegree[j] -= 1; // If indegree becomes 0, just // append into queue if ( this .indegree[j] == 0){ q.push(j); } } } return topological; } // The function prints all edges that // can be added without making any cycle // It uses recursive topologicalSort() maximumEdgeAddition(){ let visited = new Array( this .V).fill( false ); let topo = this .topologicalSort(); // Looping for all nodes for (let i = 0; i < topo.length; i++){ let t = topo[i]; // In below loop we mark the // adjacent node of t for (let indx = 0; indx < this .adj[t].length; indx++){ let j = this .adj[t][indx]; visited[j] = true ; } // In below loop unmarked nodes // are printed for (let j = i+1; j < topo.length; j++){ // If not marked, then we can make // an edge between t and j if (!visited[topo[j]]){ console.log(t.toString() + '- ' + topo[j].toString() + ' '); } visited[topo[j]] = false ; } } } } // Driver code // Create a graph given in the // above diagram let g = new Graph(6); g.addEdge(5, 2); g.addEdge(5, 0); g.addEdge(4, 0); g.addEdge(4, 1); g.addEdge(2, 3); g.addEdge(3, 1); g.maximumEdgeAddition(); // This code is contributed by gautam goel. |
4-5 4-2 4-3 5-3 5-1 2-0 2-1 0-3 0-1
Time complexity : O(V + E)
Space complexity : O(V + E)
Optimized approach for finding only the number of edges that can be added
If we have to find only the maximum number of edges that can be added, it can be solved simply by understanding the following observation. If a DAG has n nodes, it has n nodes in it’s topological sort as well. The maximum number of edges a DAG can have can be determined by finding the maximum number of nodes that can be linked with each node. This implies the first node is connected to (n-1) nodes, the second node is connected to (n-2) nodes until the last node is not connected to any node. The reason for this decreasing pattern is because any edge from right node to the left node of the topological sort creates a cycle and it’ll no longer be a DAG.
This means a DAG of n nodes can have a maximum number of
(n-1) + (n-2) + (n-3) + . . . 3 + 2 + 1 = n*(n-1)/2 edges
If the DAG already has E edges, then the maximum number of additional edges that can be added is given by (n*(n-1)/2 – E) which will be our final answer.
Below is the code implementation of the optimized approach
C++
#include <iostream> using namespace std; int max_edges( int V, int E) { return V * (V - 1) / 2 - E; } int main() { int V, E; // The number of vertices in the DAG V = 6; // The number of edges in the DAG E = 6; // Final output cout << "Maximum number of edges that can be added to maintain DAG is " << max_edges(V, E); return 0; } |
Python3
def max_edges(V,E): return V * (V - 1 ) / / 2 - E # The number of vertices in the DAG V = 6 # The number of edges in the DAG E = 6 # Final output print ( "Maximum number of edges that can be added to maintain DAG is" ,max_edges(V,E)) |
Java
import java.io.*; public class Main { static int max_edges( int V, int E) { return (V * (V - 1 ) / 2 ) - E; } public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader( new InputStreamReader(System.in)); int V, E; // The number of vertices in the DAG V = 6 ; // The number of edges in the DAG E = 6 ; // Final output System.out.println( "Maximum number of edges that can be added to maintain DAG is " + max_edges(V, E)); } } |
C#
using System; class MainClass { static int MaxEdges( int V, int E) { return (V * (V - 1) / 2) - E; } public static void Main( string [] args) { int V, E; // The number of vertices in the DAG V = 6; // The number of edges in the DAG E = 6; // Final output Console.WriteLine( "Maximum number of edges that can be added to maintain DAG is " + MaxEdges(V, E)); } } |
Javascript
function maxEdges(V, E) { return (V * (V - 1) / 2) - E; } // The number of vertices in the DAG const V = 6; // The number of edges in the DAG const E = 6; // Final output console.log(`Maximum number of edges that can be added to maintain DAG is ${maxEdges(V, E)}`); |
Maximum number of edges that can be added to maintain DAG is 9
Time Complexity: O(1)
Auxiliary Space: O(1)
NOTE: A DAG can have multiple topological sorting orders, but for each case, the maximum number of edges that can be added to maintain DAG remains same.
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Login to comment...