Number of sink nodes in a graph

Given a Directed Acyclic Graph of n nodes (numbered from 1 to n) and m edges. The task is to find the number of sink nodes. A sink node is a node such that no edge emerges out of it.

Examples:

Input : n = 4, m = 2
        Edges[] = {{2, 3}, {4, 3}} 
Output : 2

Only node 1 and node 3 are sink nodes.

Input : n = 4, m = 2
        Edges[] = {{3, 2}, {3, 4}} 
Output : 3



The idea is to iterate through all the edges. And for each edge, mark the source node from which the edge emerged out. Now, for each node check if it is marked or not. And count the unmarked nodes.
Algorithm:

 
1. Make any array A[] of size equal to the
    number of nodes and initialize to 1.
2. Traverse all the edges one by one, say, 
   u -> v.
     (i) Mark A[u] as 1.
3. Now traverse whole array A[] and count 
   number of unmarked nodes.

Below is implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count number if sink nodes
#include<bits/stdc++.h>
using namespace std;
  
// Return the number of Sink NOdes.
int countSink(int n, int m, int edgeFrom[],
                        int edgeTo[])
{
    // Array for marking the non-sink node.
    int mark[n];
    memset(mark, 0, sizeof mark);
  
    // Marking the non-sink node.
    for (int i = 0; i < m; i++)
        mark[edgeFrom[i]] = 1;
  
    // Counting the sink nodes.
    int count = 0;
    for (int i = 1; i <= n ; i++)
        if (!mark[i])
            count++;
  
    return count;
}
  
// Driven Program
int main()
{
    int n = 4, m = 2;
    int edgeFrom[] = { 2, 4 };
    int edgeTo[] = { 3, 3 };
  
    cout << countSink(n, m, edgeFrom, edgeTo) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to count number if sink nodes
import java.util.*;
  
class GFG
{
  
// Return the number of Sink NOdes.
static int countSink(int n, int m, 
                     int edgeFrom[], int edgeTo[])
{
    // Array for marking the non-sink node.
    int []mark = new int[n + 1];
  
    // Marking the non-sink node.
    for (int i = 0; i < m; i++)
        mark[edgeFrom[i]] = 1;
  
    // Counting the sink nodes.
    int count = 0;
    for (int i = 1; i <= n ; i++)
        if (mark[i] != 0)
            count++;
  
    return count;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 4, m = 2;
    int edgeFrom[] = { 2, 4 };
    int edgeTo[] = { 3, 3 };
  
    System.out.println(countSink(n, m, 
                       edgeFrom, edgeTo));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to count number if sink nodes
  
# Return the number of Sink NOdes. 
def countSink(n, m, edgeFrom, edgeTo):
      
    # Array for marking the non-sink node. 
    mark = [0] * (n + 1)
  
    # Marking the non-sink node.
    for i in range(m):
        mark[edgeFrom[i]] = 1
  
    # Counting the sink nodes. 
    count = 0
    for i in range(1, n + 1):
        if (not mark[i]): 
            count += 1
  
    return count
  
# Driver Code
if __name__ == '__main__'
      
    n = 4
    m = 2
    edgeFrom = [2, 4
    edgeTo = [3, 3]
  
    print(countSink(n, m, edgeFrom, edgeTo))
  
# This code is contributed by PranchalK

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count number if sink nodes
using System;
      
class GFG
{
  
// Return the number of Sink NOdes.
static int countSink(int n, int m, 
                     int []edgeFrom,
                     int []edgeTo)
{
    // Array for marking the non-sink node.
    int []mark = new int[n + 1];
  
    // Marking the non-sink node.
    for (int i = 0; i < m; i++)
        mark[edgeFrom[i]] = 1;
  
    // Counting the sink nodes.
    int count = 0;
    for (int i = 1; i <= n ; i++)
        if (mark[i] != 0)
            count++;
  
    return count;
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 4, m = 2;
    int []edgeFrom = { 2, 4 };
    int []edgeTo = { 3, 3 };
  
    Console.WriteLine(countSink(n, m, 
                      edgeFrom, edgeTo));
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right



Output:

2

Time Complexity: O(m + n) where n is number of nodes and m is number of edges.

Related Article:
The Celebrity Problem

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.