Number of sink nodes in a graph
Given a Directed Acyclic Graph of n nodes (numbered from 1 to n) and m edges. The task is to find the number of sink nodes. A sink node is a node such that no edge emerges out of it.
Examples:
Input : n = 4, m = 2 Edges[] = {{2, 3}, {4, 3}} Output : 2
Only node 1 and node 3 are sink nodes. Input : n = 4, m = 2 Edges[] = {{3, 2}, {3, 4}} Output : 3
The idea is to iterate through all the edges. And for each edge, mark the source node from which the edge emerged out. Now, for each node check if it is marked or not. And count the unmarked nodes.
Algorithm:
1. Make any array A[] of size equal to the number of nodes and initialize to 1. 2. Traverse all the edges one by one, say, u -> v. (i) Mark A[u] as 1. 3. Now traverse whole array A[] and count number of unmarked nodes.
Below is implementation of this approach:
C++
// C++ program to count number if sink nodes #include<bits/stdc++.h> using namespace std; // Return the number of Sink NOdes. int countSink( int n, int m, int edgeFrom[], int edgeTo[]) { // Array for marking the non-sink node. int mark[n]; memset (mark, 0, sizeof mark); // Marking the non-sink node. for ( int i = 0; i < m; i++) mark[edgeFrom[i]] = 1; // Counting the sink nodes. int count = 0; for ( int i = 1; i <= n ; i++) if (!mark[i]) count++; return count; } // Driven Program int main() { int n = 4, m = 2; int edgeFrom[] = { 2, 4 }; int edgeTo[] = { 3, 3 }; cout << countSink(n, m, edgeFrom, edgeTo) << endl; return 0; } |
Java
// Java program to count number if sink nodes import java.util.*; class GFG { // Return the number of Sink NOdes. static int countSink( int n, int m, int edgeFrom[], int edgeTo[]) { // Array for marking the non-sink node. int []mark = new int [n + 1 ]; // Marking the non-sink node. for ( int i = 0 ; i < m; i++) mark[edgeFrom[i]] = 1 ; // Counting the sink nodes. int count = 0 ; for ( int i = 1 ; i <= n ; i++) if (mark[i] == 0 ) count++; return count; } // Driver Code public static void main(String[] args) { int n = 4 , m = 2 ; int edgeFrom[] = { 2 , 4 }; int edgeTo[] = { 3 , 3 }; System.out.println(countSink(n, m, edgeFrom, edgeTo)); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to count number if sink nodes # Return the number of Sink NOdes. def countSink(n, m, edgeFrom, edgeTo): # Array for marking the non-sink node. mark = [ 0 ] * (n + 1 ) # Marking the non-sink node. for i in range (m): mark[edgeFrom[i]] = 1 # Counting the sink nodes. count = 0 for i in range ( 1 , n + 1 ): if ( not mark[i]): count + = 1 return count # Driver Code if __name__ = = '__main__' : n = 4 m = 2 edgeFrom = [ 2 , 4 ] edgeTo = [ 3 , 3 ] print (countSink(n, m, edgeFrom, edgeTo)) # This code is contributed by PranchalK |
C#
// C# program to count number if sink nodes using System; class GFG { // Return the number of Sink NOdes. static int countSink( int n, int m, int []edgeFrom, int []edgeTo) { // Array for marking the non-sink node. int []mark = new int [n + 1]; // Marking the non-sink node. for ( int i = 0; i < m; i++) mark[edgeFrom[i]] = 1; // Counting the sink nodes. int count = 0; for ( int i = 1; i <= n ; i++) if (mark[i] == 0) count++; return count; } // Driver Code public static void Main(String[] args) { int n = 4, m = 2; int []edgeFrom = { 2, 4 }; int []edgeTo = { 3, 3 }; Console.WriteLine(countSink(n, m, edgeFrom, edgeTo)); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to count number if sink nodes // Return the number of Sink NOdes. function countSink(n, m, edgeFrom, edgeTo) { // Array for marking the non-sink node. let mark = new Array(n + 1); for (let i = 0; i < n + 1; i++) { mark[i] = 0; } // Marking the non-sink node. for (let i = 0; i < m; i++) mark[edgeFrom[i]] = 1; // Counting the sink nodes. let count = 0; for (let i = 1; i <= n; i++) if (mark[i] == 0) count++; return count; } // Driver Code let n = 4, m = 2; let edgeFrom = [ 2, 4 ]; let edgeTo = [ 3, 3 ]; document.write(countSink(n, m, edgeFrom, edgeTo)); // This code is contributed by rag2127 </script> |
Output:
2
Time Complexity: O(m + n) where n is number of nodes and m is number of edges.
Space complexity : O(n) because it uses an array of size n to store the non-sink nodes.
Related Article:
The Celebrity Problem
This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...