Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Transpose graph

  • Difficulty Level : Easy
  • Last Updated : 17 Feb, 2020

Transpose of a directed graph G is another directed graph on the same set of vertices with all of the edges reversed compared to the orientation of the corresponding edges in G. That is, if G contains an edge (u, v) then the converse/transpose/reverse of G contains an edge (v, u) and vice versa.
Given a graph (represented as adjacency list), we need to find another graph which is the transpose of the given graph.

Example:

Transpose graph

Transpose Graph

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : figure (i) is the input graph.
Output : figure (ii) is the transpose graph of the given graph.

We traverse the adjacency list and as we find a vertex v in the adjacency list of vertex u which indicates an edge from u to v in main graph, we just add an edge from v to u in the transpose graph i.e. add u in the adjacency list of vertex v of the new graph. Thus traversing lists of all vertices of main graph we can get the transpose graph. Thus the total time complexity of the algorithm is O(V+E) where V is number of vertices of graph and E is the number of edges of the graph.
Note : It is simple to get the transpose of a graph which is stored in adjacency matrix format, you just need to get the transpose of that matrix.

C++




// CPP program to find transpose of a graph.
#include <bits/stdc++.h>
using namespace std;
  
// function to add an edge from vertex source to vertex dest
void addEdge(vector<int> adj[], int src, int dest)
{
    adj[src].push_back(dest); 
}
  
// function to print adjacency list of a graph
void displayGraph(vector<int> adj[], int v)
{
    for (int i = 0; i < v; i++) {
        cout << i << "--> ";
        for (int j = 0; j < adj[i].size(); j++)
            cout << adj[i][j] << "  ";
        cout << "\n";
    }
}
  
// function to get Transpose of a graph taking adjacency
// list of given graph and that of Transpose graph
void transposeGraph(vector<int> adj[], 
                     vector<int> transpose[], int v)
{
    // traverse the adjacency list of given graph and
    // for each edge (u, v) add an edge (v, u) in the
    // transpose graph's adjacency list
    for (int i = 0; i < v; i++)
        for (int j = 0; j < adj[i].size(); j++)
            addEdge(transpose, adj[i][j], i);
}
  
int main()
{
    int v = 5;
    vector<int> adj[v];
    addEdge(adj, 0, 1);
    addEdge(adj, 0, 4);
    addEdge(adj, 0, 3);
    addEdge(adj, 2, 0);
    addEdge(adj, 3, 2);
    addEdge(adj, 4, 1);
    addEdge(adj, 4, 3);
  
    // Finding transpose of graph represented
    // by adjacency list adj[]
    vector<int> transpose[v];
    transposeGraph(adj, transpose, v);
  
    // displaying adjacency list of transpose 
    // graph i.e. b
    displayGraph(transpose, v);
  
    return 0;
}

Java




// Java program to find the transpose of a graph
import java.util.*;
import java.lang.*;
import java.io.*;
  
class Graph
{
    // Total number of vertices
    private static int vertices = 5;
      
    // Find transpose of graph represented by adj
    private static ArrayList<Integer>[] adj = new ArrayList[vertices];
     
    // Store the transpose of graph represented by tr
    private static ArrayList<Integer>[] tr = new ArrayList[vertices];
  
    // Function to add an edge from source vertex u to 
    // destination vertex v, if choice is false the edge is added
    // to adj otherwise the edge is added to tr
    public static void addedge(int u, int v, boolean choice)
    {
        if(!choice)
            adj[u].add(v);
        else
            tr[u].add(v);
    }
  
    // Function to print the graph representation
    public static void printGraph()
    {
        for(int i = 0; i < vertices; i++)
        {
            System.out.print(i + "--> ");
            for(int j = 0; j < tr[i].size(); j++)
                System.out.print(tr[i].get(j) + " ");
            System.out.println();
        }
    }
  
    // Function to print the transpose of 
    // the graph represented as adj and store it in tr
    public static void getTranspose()
    {
  
        // Traverse the graph and for each edge u, v 
        // in graph add the edge v, u in transpose
        for(int i = 0; i < vertices; i++)
            for(int j = 0; j < adj[i].size(); j++)
                addedge(adj[i].get(j), i, true);
    }
  
    public static void main (String[] args) throws java.lang.Exception
    {
        for(int i = 0; i < vertices; i++)
        {
            adj[i] = new ArrayList<Integer>();
            tr[i] = new ArrayList<Integer>();
        }
        addedge(0, 1, false);
        addedge(0, 4, false);
        addedge(0, 3, false);
        addedge(2, 0, false);
        addedge(3, 2, false);
        addedge(4, 1, false);
        addedge(4, 3, false);
          
        // Finding transpose of the graph 
        getTranspose();
          
        // Printing the graph representation
        printGraph();
    }
}
  
// This code is contributed by code_freak

Python3




# Python3 program to find transpose of a graph. 
  
# function to add an edge from vertex 
# source to vertex dest 
def addEdge(adj, src, dest):
    adj[src].append(dest)
  
# function to pradjacency list 
# of a graph 
def displayGraph(adj, v):
    for i in range(v):
        print(i, "--> ", end = "")
        for j in range(len(adj[i])):
            print(adj[i][j], end = " "
        print()
  
# function to get Transpose of a graph 
# taking adjacency list of given graph
# and that of Transpose graph 
def transposeGraph(adj, transpose, v):
      
    # traverse the adjacency list of given 
    # graph and for each edge (u, v) add 
    # an edge (v, u) in the transpose graph's
    # adjacency list
    for i in range(v):
        for j in range(len(adj[i])):
            addEdge(transpose, adj[i][j], i)
  
# Driver Code
if __name__ == '__main__':
  
    v = 5
    adj = [[] for i in range(v)] 
    addEdge(adj, 0, 1
    addEdge(adj, 0, 4
    addEdge(adj, 0, 3
    addEdge(adj, 2, 0
    addEdge(adj, 3, 2
    addEdge(adj, 4, 1
    addEdge(adj, 4, 3
  
    # Finding transpose of graph represented 
    # by adjacency list adj[] 
    transpose = [[]for i in range(v)]
    transposeGraph(adj, transpose, v) 
  
    # displaying adjacency list of 
    # transpose graph i.e. b 
    displayGraph(transpose, v)
  
# This code is contributed by PranchalK

C#




// C# program to find the transpose of a graph
using System;
using System.Collections.Generic;
  
class Graph
{
    // Total number of vertices
    private static int vertices = 5;
      
    // Find transpose of graph represented by adj
    private static List<int>[] adj = new List<int>[vertices];
      
    // Store the transpose of graph represented by tr
    private static List<int>[] tr = new List<int>[vertices];
  
    // Function to add an edge from source vertex u to 
    // destination vertex v, if choice is false the edge is added
    // to adj otherwise the edge is added to tr
    public static void addedge(int u, int v, bool choice)
    {
        if(!choice)
            adj[u].Add(v);
        else
            tr[u].Add(v);
    }
  
    // Function to print the graph representation
    public static void printGraph()
    {
        for(int i = 0; i < vertices; i++)
        {
            Console.Write(i + "--> ");
            for(int j = 0; j < tr[i].Count; j++)
                Console.Write(tr[i][j] + " ");
            Console.WriteLine();
        }
    }
  
    // Function to print the transpose of 
    // the graph represented as adj and store it in tr
    public static void getTranspose()
    {
  
        // Traverse the graph and for each edge u, v 
        // in graph add the edge v, u in transpose
        for(int i = 0; i < vertices; i++)
            for(int j = 0; j < adj[i].Count; j++)
                addedge(adj[i][j], i, true);
    }
  
    // Driver code
    public static void Main(String[] args)
    {
        for(int i = 0; i < vertices; i++)
        {
            adj[i] = new List<int>();
            tr[i] = new List<int>();
        }
        addedge(0, 1, false);
        addedge(0, 4, false);
        addedge(0, 3, false);
        addedge(2, 0, false);
        addedge(3, 2, false);
        addedge(4, 1, false);
        addedge(4, 3, false);
          
        // Finding transpose of the graph 
        getTranspose();
          
        // Printing the graph representation
        printGraph();
    }
}
  
  
// This code is contributed by Rajput-Ji
Output:
0--> 2  
1--> 0  4  
2--> 3  
3--> 0  4  
4--> 0



My Personal Notes arrow_drop_up
Recommended Articles
Page :