Given a Directed Graph and two vertices in it, check whether there is a path from the first given vertex to second. For example, in the following graph, there is a path from vertex 1 to 3. As another example, there is no path from 3 to 0.

We can either use Breadth First Search (BFS) or Depth First Search (DFS) to find path between two vertices. Take the first vertex as source in BFS (or DFS), follow the standard BFS (or DFS). If we see the second vertex in our traversal, then return true. Else return false.

Following are C++,Java and Python codes that use BFS for finding reachability of second vertex from first vertex.

## C++

`// C++ program to check if there is exist a path between two vertices ` `// of a graph. ` `#include<iostream> ` `#include <list> ` `using` `namespace` `std; ` ` ` `// This class represents a directed graph using adjacency list ` `// representation ` `class` `Graph ` `{ ` ` ` `int` `V; ` `// No. of vertices ` ` ` `list<` `int` `> *adj; ` `// Pointer to an array containing adjacency lists ` `public` `: ` ` ` `Graph(` `int` `V); ` `// Constructor ` ` ` `void` `addEdge(` `int` `v, ` `int` `w); ` `// function to add an edge to graph ` ` ` `bool` `isReachable(` `int` `s, ` `int` `d); ` `}; ` ` ` `Graph::Graph(` `int` `V) ` `{ ` ` ` `this` `->V = V; ` ` ` `adj = ` `new` `list<` `int` `>[V]; ` `} ` ` ` `void` `Graph::addEdge(` `int` `v, ` `int` `w) ` `{ ` ` ` `adj[v].push_back(w); ` `// Add w to v’s list. ` `} ` ` ` `// A BFS based function to check whether d is reachable from s. ` `bool` `Graph::isReachable(` `int` `s, ` `int` `d) ` `{ ` ` ` `// Base case ` ` ` `if` `(s == d) ` ` ` `return` `true` `; ` ` ` ` ` `// Mark all the vertices as not visited ` ` ` `bool` `*visited = ` `new` `bool` `[V]; ` ` ` `for` `(` `int` `i = 0; i < V; i++) ` ` ` `visited[i] = ` `false` `; ` ` ` ` ` `// Create a queue for BFS ` ` ` `list<` `int` `> queue; ` ` ` ` ` `// Mark the current node as visited and enqueue it ` ` ` `visited[s] = ` `true` `; ` ` ` `queue.push_back(s); ` ` ` ` ` `// it will be used to get all adjacent vertices of a vertex ` ` ` `list<` `int` `>::iterator i; ` ` ` ` ` `while` `(!queue.empty()) ` ` ` `{ ` ` ` `// Dequeue a vertex from queue and print it ` ` ` `s = queue.front(); ` ` ` `queue.pop_front(); ` ` ` ` ` `// Get all adjacent vertices of the dequeued vertex s ` ` ` `// If a adjacent has not been visited, then mark it visited ` ` ` `// and enqueue it ` ` ` `for` `(i = adj[s].begin(); i != adj[s].end(); ++i) ` ` ` `{ ` ` ` `// If this adjacent node is the destination node, then ` ` ` `// return true ` ` ` `if` `(*i == d) ` ` ` `return` `true` `; ` ` ` ` ` `// Else, continue to do BFS ` ` ` `if` `(!visited[*i]) ` ` ` `{ ` ` ` `visited[*i] = ` `true` `; ` ` ` `queue.push_back(*i); ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `// If BFS is complete without visiting d ` ` ` `return` `false` `; ` `} ` ` ` `// Driver program to test methods of graph class ` `int` `main() ` `{ ` ` ` `// Create a graph given in the above diagram ` ` ` `Graph g(4); ` ` ` `g.addEdge(0, 1); ` ` ` `g.addEdge(0, 2); ` ` ` `g.addEdge(1, 2); ` ` ` `g.addEdge(2, 0); ` ` ` `g.addEdge(2, 3); ` ` ` `g.addEdge(3, 3); ` ` ` ` ` `int` `u = 1, v = 3; ` ` ` `if` `(g.isReachable(u, v)) ` ` ` `cout<< ` `"\n There is a path from "` `<< u << ` `" to "` `<< v; ` ` ` `else` ` ` `cout<< ` `"\n There is no path from "` `<< u << ` `" to "` `<< v; ` ` ` ` ` `u = 3, v = 1; ` ` ` `if` `(g.isReachable(u, v)) ` ` ` `cout<< ` `"\n There is a path from "` `<< u << ` `" to "` `<< v; ` ` ` `else` ` ` `cout<< ` `"\n There is no path from "` `<< u << ` `" to "` `<< v; ` ` ` ` ` `return` `0; ` `} ` |

## Java

`// Java program to check if there is exist a path between two vertices ` `// of a graph. ` `import` `java.io.*; ` `import` `java.util.*; ` `import` `java.util.LinkedList; ` ` ` `// This class represents a directed graph using adjacency list ` `// representation ` `class` `Graph ` `{ ` ` ` `private` `int` `V; ` `// No. of vertices ` ` ` `private` `LinkedList<Integer> adj[]; ` `//Adjacency List ` ` ` ` ` `//Constructor ` ` ` `Graph(` `int` `v) ` ` ` `{ ` ` ` `V = v; ` ` ` `adj = ` `new` `LinkedList[v]; ` ` ` `for` `(` `int` `i=` `0` `; i<v; ++i) ` ` ` `adj[i] = ` `new` `LinkedList(); ` ` ` `} ` ` ` ` ` `//Function to add an edge into the graph ` ` ` `void` `addEdge(` `int` `v,` `int` `w) { adj[v].add(w); } ` ` ` ` ` `//prints BFS traversal from a given source s ` ` ` `Boolean isReachable(` `int` `s, ` `int` `d) ` ` ` `{ ` ` ` `LinkedList<Integer>temp; ` ` ` ` ` `// Mark all the vertices as not visited(By default set ` ` ` `// as false) ` ` ` `boolean` `visited[] = ` `new` `boolean` `[V]; ` ` ` ` ` `// Create a queue for BFS ` ` ` `LinkedList<Integer> queue = ` `new` `LinkedList<Integer>(); ` ` ` ` ` `// Mark the current node as visited and enqueue it ` ` ` `visited[s]=` `true` `; ` ` ` `queue.add(s); ` ` ` ` ` `// 'i' will be used to get all adjacent vertices of a vertex ` ` ` `Iterator<Integer> i; ` ` ` `while` `(queue.size()!=` `0` `) ` ` ` `{ ` ` ` `// Dequeue a vertex from queue and print it ` ` ` `s = queue.poll(); ` ` ` ` ` `int` `n; ` ` ` `i = adj[s].listIterator(); ` ` ` ` ` `// Get all adjacent vertices of the dequeued vertex s ` ` ` `// If a adjacent has not been visited, then mark it ` ` ` `// visited and enqueue it ` ` ` `while` `(i.hasNext()) ` ` ` `{ ` ` ` `n = i.next(); ` ` ` ` ` `// If this adjacent node is the destination node, ` ` ` `// then return true ` ` ` `if` `(n==d) ` ` ` `return` `true` `; ` ` ` ` ` `// Else, continue to do BFS ` ` ` `if` `(!visited[n]) ` ` ` `{ ` ` ` `visited[n] = ` `true` `; ` ` ` `queue.add(n); ` ` ` `} ` ` ` `} ` ` ` `} ` ` ` ` ` `// If BFS is complete without visited d ` ` ` `return` `false` `; ` ` ` `} ` ` ` ` ` `// Driver method ` ` ` `public` `static` `void` `main(String args[]) ` ` ` `{ ` ` ` `// Create a graph given in the above diagram ` ` ` `Graph g = ` `new` `Graph(` `4` `); ` ` ` `g.addEdge(` `0` `, ` `1` `); ` ` ` `g.addEdge(` `0` `, ` `2` `); ` ` ` `g.addEdge(` `1` `, ` `2` `); ` ` ` `g.addEdge(` `2` `, ` `0` `); ` ` ` `g.addEdge(` `2` `, ` `3` `); ` ` ` `g.addEdge(` `3` `, ` `3` `); ` ` ` ` ` `int` `u = ` `1` `; ` ` ` `int` `v = ` `3` `; ` ` ` `if` `(g.isReachable(u, v)) ` ` ` `System.out.println(` `"There is a path from "` `+ u +` `" to "` `+ v); ` ` ` `else` ` ` `System.out.println(` `"There is no path from "` `+ u +` `" to "` `+ v);; ` ` ` ` ` `u = ` `3` `; ` ` ` `v = ` `1` `; ` ` ` `if` `(g.isReachable(u, v)) ` ` ` `System.out.println(` `"There is a path from "` `+ u +` `" to "` `+ v); ` ` ` `else` ` ` `System.out.println(` `"There is no path from "` `+ u +` `" to "` `+ v);; ` ` ` `} ` `} ` `// This code is contributed by Aakash Hasija ` |

## Python

`# program to check if there is exist a path between two vertices ` `# of a graph ` ` ` `from` `collections ` `import` `defaultdict ` ` ` `#This class represents a directed graph using adjacency list representation ` `class` `Graph: ` ` ` ` ` `def` `__init__(` `self` `,vertices): ` ` ` `self` `.V` `=` `vertices ` `#No. of vertices ` ` ` `self` `.graph ` `=` `defaultdict(` `list` `) ` `# default dictionary to store graph ` ` ` ` ` `# function to add an edge to graph ` ` ` `def` `addEdge(` `self` `,u,v): ` ` ` `self` `.graph[u].append(v) ` ` ` ` ` `# Use BFS to check path between s and d ` ` ` `def` `isReachable(` `self` `, s, d): ` ` ` `# Mark all the vertices as not visited ` ` ` `visited ` `=` `[` `False` `]` `*` `(` `self` `.V) ` ` ` ` ` `# Create a queue for BFS ` ` ` `queue` `=` `[] ` ` ` ` ` `# Mark the source node as visited and enqueue it ` ` ` `queue.append(s) ` ` ` `visited[s] ` `=` `True` ` ` ` ` `while` `queue: ` ` ` ` ` `#Dequeue a vertex from queue ` ` ` `n ` `=` `queue.pop(` `0` `) ` ` ` ` ` `# If this adjacent node is the destination node, ` ` ` `# then return true ` ` ` `if` `n ` `=` `=` `d: ` ` ` `return` `True` ` ` ` ` `# Else, continue to do BFS ` ` ` `for` `i ` `in` `self` `.graph[n]: ` ` ` `if` `visited[i] ` `=` `=` `False` `: ` ` ` `queue.append(i) ` ` ` `visited[i] ` `=` `True` ` ` `# If BFS is complete without visited d ` ` ` `return` `False` ` ` `# Create a graph given in the above diagram ` `g ` `=` `Graph(` `4` `) ` `g.addEdge(` `0` `, ` `1` `) ` `g.addEdge(` `0` `, ` `2` `) ` `g.addEdge(` `1` `, ` `2` `) ` `g.addEdge(` `2` `, ` `0` `) ` `g.addEdge(` `2` `, ` `3` `) ` `g.addEdge(` `3` `, ` `3` `) ` ` ` `u ` `=` `1` `; v ` `=` `3` ` ` `if` `g.isReachable(u, v): ` ` ` `print` `(` `"There is a path from %d to %d"` `%` `(u,v)) ` `else` `: ` ` ` `print` `(` `"There is no path from %d to %d"` `%` `(u,v)) ` ` ` `u ` `=` `3` `; v ` `=` `1` `if` `g.isReachable(u, v) : ` ` ` `print` `(` `"There is a path from %d to %d"` `%` `(u,v)) ` `else` `: ` ` ` `print` `(` `"There is no path from %d to %d"` `%` `(u,v)) ` ` ` `#This code is contributed by Neelam Yadav ` |

Output:

There is a path from 1 to 3 There is no path from 3 to 1

As an exercise, try an extended version of the problem where the complete path between two vertices is also needed.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

## Recommended Posts:

- Print all paths from a given source to a destination using BFS
- Print all paths from a given source to a destination
- Count all possible walks from a source to a destination with exactly k edges
- Check if a graph is strongly connected | Set 1 (Kosaraju using DFS)
- Biconnected graph
- Articulation Points (or Cut Vertices) in a Graph
- Strongly Connected Components
- Topological Sorting
- Dijkstra's shortest path algorithm | Greedy Algo-7
- Graph and its representations
- Find the number of islands | Set 1 (Using DFS)
- Hamiltonian Cycle | Backtracking-6
- Detect Cycle in a Directed Graph
- Breadth First Search or BFS for a Graph
- Depth First Search or DFS for a Graph