Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Properties of Definite Integrals

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

An integral which has a limit is known as definite integrals. It has an upper limit and lower limit. It is represented as 

\int_{a}^{b}    f(x) = F(b) − F(a)

There are many properties regarding definite integral. We will discuss each property one by one with proof also.

Properties

Property 1: \int_{a}^{b}     f(x) dx = \int_{a}^{b}     f(y) dy

Proof:

\int_{a}^{b}     f(x) dx…….(1)

Suppose x = y

           dx = dy

Putting this in equation (1)

\int_{a}^{b}     f(y) dy

Property 2: \int_{a}^{b}     f(x) dx = –\int_{b}^{a}     f(x) dx

Proof:

\int_{a}^{b}     f(x) dx = F(b) – F(a)……..(1)

\int_{b}^{a}     f(x) dx = F(a) – F(b)………. (2)

From (1) and (2) 

We can derive \int_{a}^{b}     f(x) dx = –\int_{b}^{a}     f(x) dx

Property 3: \int_{a}^{b}    f(x) dx = \int_{a}^{p}    f(x) dx + \int_{p}^{b}    f(x) dx

Proof:

\int_{a}^{b}     f(x) dx = F(b) – F(a) ………..(1)

\int_{a}^{p}     f(x) dx = F(p) – F(a) ………..(2)

\int_{p}^{b}     f(x) dx = F(b) – F(p) ………..(3)

From (2) and (3)

\int_{a}^{p}    f(x) dx + \int_{p}^{b}    f(x) dx = F(p) – F(a) + F(b) – F(p)

\int_{a}^{p}    f(x) dx + \int_{p}^{b}    f(x) dx = F(b) – F(a) = \int_{a}^{b}    f(x) dx    

Hence, it is Proved.

Property 4.1: \int_{a}^{b}     f(x) dx = \int_{a}^{b}    f(a + b – x) dx

Proof:

Suppose 

a + b – x = y…………(1)

-dx = dy 

From (1) you can see 

when x = a  

y = a + b – a

y = b

and when x = b

y = a + b – b

y = a

Replacing by these values he integration on right side becomes -\int_{b}^{a}     f(y)dy

From property 1 and property 2 you can say that 

\int_{a}^{b}     f(x) dx = \int_{a}^{b}    f(a + b – x) dx  

Property 4.2: If the value of a is given as 0 then property 4.1 can be written as

 \int_{0}^{b}     f(x) dx = \int_{0}^{b}    f(b – x) dx

Property 5: \int_{0}^{2a}     f(x) dx = \int_{0}^{a}    f(x) dx + \int_{0}^{a}    f(2a – x) dx

Proof:

We can write \int_{0}^{2a}     f(x) dx as

\int_{0}^{2a}     f(x) dx = \int_{0}^{a}    f(x) dx + \int_{a}^{2a}    f(x) dx  ………….. (1)

I = I1 + I

(from property 3)

Suppose 2a – x = y

-dx = dy

Also when x = 0

y = 2a, and when x = a

y = 2a – a = a

So, \int_{0}^{a}     f(2a – x)dx  can be written as 

-\int_{2a}^{a}     f(y) dy = I2

Replacing equation (1) with the value of I2 we get 

\int_{0}^{2a}     f(x) dx = \int_{0}^{a}    f(x) dx + \int_{0}^{a}    f(2a – x) dx

Property 6 : \int_{0}^{2a}     f(x) dx = 2\int_{0}^{a}    f(x) dx; if f(2a – x) = f(x)

                                                      =  0                    ; if f(2a – x) = -f(x) 

Proof: 

From property 5 we can write \int_{0}^{2a}     f(x) dx as

\int_{0}^{2a}     f(x) dx =\int_{0}^{a}    f(x) dx + \int_{0}^{a}    f(2a – x) dx  ………….(1)

Part  1: If f(2a – x) = f(x) 

Then equation (1) can be written as 

\int_{0}^{2a}    f(x) dx =\int_{0}^{a}    f(x) dx + \int_{0}^{a}    f(x) dx

This can be further written as 

\int_{0}^{2a}     f(x) dx = 2 \int_{0}^{a}    f(x) dx

Part  2: If f(2a – x) = -f(x)

Then equation (1) can be written as 

 \int_{0}^{2a}     f(x) dx= \int_{0}^{a}    f(x) dx – \int_{0}^{a}    f(x) dx

This can be further written as 

\int_{0}^{2a}     f(x) dx= 0

Property 7: \int_{-a}^{a}     f(x) dx =\int_{0}^{a}    f(x) dx; if a function is even i.e. f(-x) = f(x)

                                                       = 0                   ; if a function is odd i.e. f(-x) = -f(x) 

Proof: 

From property 3 we can write 

\int_{-a}^{a}     f(x) dx as 

\int_{-a}^{a}     f(x) dx = \int_{-a}^{0}    f(x) dx + \int_{0}^{a}    f(x) dx  ………(1)

Suppose 

\int_{-a}^{0}     f(x) dx = I1 ……(2)

Now, assume x = -y

So, dx = -dy

And also when x = -a then

y= -(-a) = a

and when x = 0 then, y = 0

Putting these values in equation (2) we get

I1 -\int_{a}^{0}     f(-y)dy

Using property 2, I1 can be written as 

I1\int_{0}^{a}     f(-y)dy

and using property 1 I1 can be written  as 

I1 \int_{0}^{a}     f(-x)dx

Putting value of I1 in equation (1), we get

\int_{-a}^{a}     f(x) dx = \int_{0}^{a}    f(-x) dx +\int_{0}^{a}    f(x) dx   ……….(3)

Part 1: When f(-x) = f(x)

Then equation(3) becomes

\int_{-a}^{a}     f(x) dx = \int_{0}^{a}    f(x) dx + \int_{0}^{a}    f(x) dx

\int_{-a}^{a}     f(x) dx = 2\int_{0}^{a}    f(x) dx 

Part  2: When f(-x) = -f(x)

Then equation 3 becomes

\int_{-a}^{a}     f(x) dx = –\int_{0}^{a}    f(x) dx +\int_{0}^{a}    f(x) d

\int_{-a}^{a}     f(x)dx = 0

Examples

Example 1: I = \int_{0}^{1}     x(1 – x)99 dx

Solution:

Using  property  4.2 he given question can be written as 

\int_{0}^{1}     (1 – x) [1 – (1 – x)]99 dx

\int_{0}^{1}     (1 – x) [1 – 1 + x]99 dx

 \int_{0}^{1}    (1 – x)x99 dx

\begin{bmatrix} \frac{x^{100}}{100} - \frac{x^{101}}{101} \end{bmatrix}_{0}^{1}

= 1/100 – 1/101

= 1 / 10100

Example 2: I = \int_{\frac{-1}{2}}^{\frac{-1}{2}}     cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}

Solution:

f(x) = cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}

 f(-x) = cos(-x) log \begin{vmatrix} \frac{1-x}{1+x} \end{vmatrix}

 f(-x) = -cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}

f(-x) = -f(x)

Hence the function is odd. So, Using property 

\int_{-a}^{a}     f(x)dx = 0; if a function is odd i.e. f(-x) = -f(x) 

\int_{\frac{-1}{2}}^{\frac{-1}{2}}     cos(x) log \begin{vmatrix} \frac{1+x}{1-x} \end{vmatrix}     = 0

Example 3: I = \int_{0}^{5}     [x] dx

Solution:

\int_{0}^{1}     0 dx + \int_{1}^{2}    1 dx + \int_{2}^{3}     2 dx +\int_{3}^{4}     3 dx + \int_{4}^{5}     4 dx  [using Property 3]

= 0 + [x]21 + 2[x]32  + 3[x]43 + 4[x]54 

= 0 + (2 – 1) + 2(3 – 2) + 3(4 – 3) + 4(5 – 4)

= 0 + 1 + 2 + 3 + 4

= 10

Example 4: I =  \int_{-1}^{2}     |x| dx

Solution:

\int_{-1}^{0}     (-x) dx + \int_{0}^{2}     (x) dx  [using Property 3] 

= -[x2/2]0-1 + [x2/2]2 

= -[0/2 – 1/2] + [4/2 – 0]

= 1/2 + 2

= 5/2


My Personal Notes arrow_drop_up
Last Updated : 30 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials