Open In App
Related Articles

# Determine whether a universal sink exists in a directed graph

Determine whether a universal sink exists in a directed graph. A universal sink is a vertex which has no edge emanating from it, and all other vertices have an edge towards the sink.

```Input :
v1 -> v2 (implies vertex 1 is connected to vertex 2)
v3 -> v2
v4 -> v2
v5 -> v2
v6 -> v2
Output :
Sink found at vertex 2

Input :
v1 -> v6
v2 -> v3
v2 -> v4
v4 -> v3
v5 -> v3
Output :
No Sink```

We try to eliminate n – 1 non-sink vertices in O(n) time and check the remaining vertex for the sink property.
To eliminate vertices, we check whether a particular index (A[i][j]) in the adjacency matrix is a 1 or a 0. If it is a 0, it means that the vertex corresponding to index j cannot be a sink. If the index is a 1, it means the vertex corresponding to i cannot be a sink. We keep increasing i and j in this fashion until either i or j exceeds the number of vertices.
Using this method allows us to carry out the universal sink test for only one vertex instead of all n vertices. Suppose we are left with only vertex i.
We now check for whether row i has only 0s and whether row j as only 1s except for A[i][i], which will be 0.

Illustration :

```v1 -> v2
v3 -> v2
v4 -> v2
v5 -> v2
v6 -> v2
We can visualize the adjacency matrix for
the above as follows:
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 ```

We observe that vertex 2 does not have any emanating edge, and that every other vertex has an edge in vertex 2. At A[0][0] (A[i][j]), we encounter a 0, so we increment j and next look at A[0][1]. Here we encounter a 1. So we have to increment i by 1. A[1][1] is 0, so we keep increasing j.

We notice that A[1][2], A[1][3].. etc are all 0, so j will exceed the number of vertices (6 in this example). We now check row i and column i for the sink property. Row i must be completely 0, and column i must be completely 1 except for the index A[i][i]

Second Example:

```v1 -> v6
v2 -> v3
v2 -> v4
v4 -> v3
v5 -> v3
We can visualize the adjacency matrix
for the above as follows:
0 0 0 0 0 1
0 0 1 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0```

In this example, we observer that in row 1, every element is 0 except for the last column. So we will increment j until we reach the 1. When we reach 1, we increment i as long as the value of A[i][j] is 0. If i exceeds the number of vertices, it is not possible to have a sink, and in this case, i will exceed the number of vertices.

Implementation:

## C++

 `#include ``using` `namespace` `std;` `const` `int` `MAX = 100;` `class` `Graph {``    ``int` `vertices;``    ``int` `adjacency_matrix[MAX][MAX];` `public``:``    ``Graph(``int` `vertices)``    ``{``        ``this``->vertices = vertices;``        ``memset``(adjacency_matrix, 0,``               ``sizeof``(adjacency_matrix));``    ``}``    ``void` `insert(``int` `source, ``int` `destination)``    ``{``        ``adjacency_matrix[destination - 1] = 1;``    ``}` `    ``bool` `is_sink(``int` `i)``    ``{``        ``for` `(``int` `j = 0; j < vertices; j++) {``            ``if` `(adjacency_matrix[i][j] == 1)``                ``return` `false``;``            ``if` `(adjacency_matrix[j][i] == 0 && j != i)``                ``return` `false``;``        ``}``        ``return` `true``;``    ``}` `    ``int` `eliminate()``    ``{``        ``int` `i = 0, j = 0;``        ``while` `(i < vertices && j < vertices) {``            ``if` `(adjacency_matrix[i][j] == 1)``                ``i = i + 1;``            ``else``                ``j = j + 1;``        ``}` `        ``if` `(i > vertices)``            ``return` `-1;``        ``else` `if` `(!is_sink(i))``            ``return` `-1;``        ``else``            ``return` `i;``    ``}``};` `int` `main()``{``    ``int` `number_of_vertices = 6, number_of_edges = 5;``    ``Graph g(number_of_vertices);``    ``g.insert(1, 6);``    ``g.insert(2, 3);``    ``g.insert(2, 4);``    ``g.insert(4, 3);``    ``g.insert(5, 3);` `    ``int` `vertex = g.eliminate();` `    ``if` `(vertex >= 0)``        ``cout << ``"Sink found at vertex "` `<< (vertex + 1)``             ``<< endl;``    ``else``        ``cout << ``"No Sink"` `<< endl;` `    ``return` `0;``}``//This Code is Contributed by chinmaya121221`

## Java

 `// Java program to find whether a universal sink``// exists in a directed graph``import` `java.io.*;``import` `java.util.*;` `class` `graph``{``    ``int` `vertices;``    ``int``[][] adjacency_matrix;` `    ``// constructor to initialize number of vertices and``    ``// size of adjacency matrix``    ``public` `graph(``int` `vertices)``    ``{``        ``this``.vertices = vertices;``        ``adjacency_matrix = ``new` `int``[vertices][vertices];``    ``}` `    ``public` `void` `insert(``int` `source, ``int` `destination)``    ``{``        ``// make adjacency_matrix[i][j] = 1 if there is``        ``// an edge from i to j``        ``adjacency_matrix[destination-``1``] = ``1``;``    ``}` `    ``public` `boolean` `issink(``int` `i)``    ``{``        ``for` `(``int` `j = ``0` `; j < vertices ; j++)``        ``{``            ``// if any element in the row i is 1, it means``            ``// that there is an edge emanating from the``            ``// vertex, which means it cannot be a sink``            ``if` `(adjacency_matrix[i][j] == ``1``)``                ``return` `false``;` `            ``// if any element other than i in the column``            ``// i is 0, it means that there is no edge from``            ``// that vertex to the vertex we are testing``            ``// and hence it cannot be a sink``            ``if` `(adjacency_matrix[j][i] == ``0` `&& j != i)``                ``return` `false``;``        ``}``        ``//if none of the checks fails, return true``        ``return` `true``;``    ``}` `    ``// we will eliminate n-1 non sink vertices so that``    ``// we have to check for only one vertex instead of``    ``// all n vertices``    ``public` `int` `eliminate()``    ``{``        ``int` `i = ``0``, j = ``0``;``        ``while` `(i < vertices && j < vertices)``        ``{``            ``// If the index is 1, increment the row we are``            ``// checking by 1``            ``// else increment the column``            ``if` `(adjacency_matrix[i][j] == ``1``)``                ``i = i + ``1``;``            ``else``                ``j = j + ``1``;` `        ``}` `        ``// If i exceeds the number of vertices, it``        ``// means that there is no valid vertex in``        ``// the given vertices that can be a sink``        ``if` `(i > vertices)``            ``return` `-``1``;``        ``else` `if` `(!issink(i))``            ``return` `-``1``;``        ``else` `return` `i;``    ``}``}` `public` `class` `Sink``{``    ``public` `static` `void` `main(String[] args)``throws` `IOException``    ``{``        ``int` `number_of_vertices = ``6``;``        ``int` `number_of_edges = ``5``;``        ``graph g = ``new` `graph(number_of_vertices);``        ``/*``        ``//input set 1``        ``g.insert(1, 6);``        ``g.insert(2, 6);``        ``g.insert(3, 6);``        ``g.insert(4, 6);``        ``g.insert(5, 6);``        ``*/``        ``//input set 2``        ``g.insert(``1``, ``6``);``        ``g.insert(``2``, ``3``);``        ``g.insert(``2``, ``4``);``        ``g.insert(``4``, ``3``);``        ``g.insert(``5``, ``3``);` `        ``int` `vertex = g.eliminate();` `        ``// returns 0 based indexing of vertex. returns``        ``// -1 if no sink exits.``        ``// returns the vertex number-1 if sink is found``        ``if` `(vertex >= ``0``)``            ``System.out.println(``"Sink found at vertex "``                                     ``+ (vertex + ``1``));``        ``else``            ``System.out.println(``"No Sink"``);``    ``}``}`

## Python3

 `# Python3 program to find whether a``# universal sink exists in a directed graph``class` `Graph:` `    ``# constructor to initialize number of``    ``# vertices and size of adjacency matrix``    ``def` `__init__(``self``, vertices):``        ``self``.vertices ``=` `vertices``        ``self``.adjacency_matrix ``=` `[[``0` `for` `i ``in` `range``(vertices)]``                                    ``for` `j ``in` `range``(vertices)]` `    ``def` `insert(``self``, s, destination):` `        ``# make adjacency_matrix[i][j] = 1``        ``# if there is an edge from i to j``        ``self``.adjacency_matrix[s ``-` `1``][destination ``-` `1``] ``=` `1` `    ``def` `issink(``self``, i):``        ``for` `j ``in` `range``(``self``.vertices):` `            ``# if any element in the row i is 1, it means``            ``# that there is an edge emanating from the``            ``# vertex, which means it cannot be a sink``            ``if` `self``.adjacency_matrix[i][j] ``=``=` `1``:``                ``return` `False` `            ``# if any element other than i in the column``            ``# i is 0, it means that there is no edge from``            ``# that vertex to the vertex we are testing``            ``# and hence it cannot be a sink``            ``if` `self``.adjacency_matrix[j][i] ``=``=` `0` `and` `j !``=` `i:``                ``return` `False` `        ``# if none of the checks fails, return true``        ``return` `True` `    ``# we will eliminate n-1 non sink vertices so that``    ``# we have to check for only one vertex instead of``    ``# all n vertices``    ``def` `eliminate(``self``):``        ``i ``=` `0``        ``j ``=` `0``        ``while` `i < ``self``.vertices ``and` `j < ``self``.vertices:` `            ``# If the index is 1, increment the row``            ``# we are checking by 1``            ``# else increment the column``            ``if` `self``.adjacency_matrix[i][j] ``=``=` `1``:``                ``i ``+``=` `1``            ``else``:``                ``j ``+``=` `1` `        ``# If i exceeds the number of vertices, it``        ``# means that there is no valid vertex in``        ``# the given vertices that can be a sink``        ``if` `i > ``self``.vertices:``            ``return` `-``1``        ``elif` `self``.issink(i) ``is` `False``:``            ``return` `-``1``        ``else``:``            ``return` `i` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:` `    ``number_of_vertices ``=` `6``    ``number_of_edges ``=` `5``    ``g ``=` `Graph(number_of_vertices)` `    ``# input set 1``    ``# g.insert(1, 6)``    ``# g.insert(2, 6)``    ``# g.insert(3, 6)``    ``# g.insert(4, 6)``    ``# g.insert(5, 6)``    ` `    ``# input set 2``    ``g.insert(``1``, ``6``)``    ``g.insert(``2``, ``3``)``    ``g.insert(``2``, ``4``)``    ``g.insert(``4``, ``3``)``    ``g.insert(``5``, ``3``)` `    ``vertex ``=` `g.eliminate()` `    ``# returns 0 based indexing of vertex.``    ``# returns -1 if no sink exits.``    ``# returns the vertex number-1 if sink is found``    ``if` `vertex >``=` `0``:``        ``print``(``"Sink found at vertex %d"` `%` `(vertex ``+` `1``))``    ``else``:``        ``print``(``"No Sink"``)` `# This code is contributed by``# sanjeev2552`

## C#

 `// C# program to find whether a universal sink``// exists in a directed graph``using` `System;``using` `System.Collections.Generic;` `class` `graph``{``    ``int` `vertices, itr;``    ``int``[,] adjacency_matrix;` `    ``// constructor to initialize number of vertices and``    ``// size of adjacency matrix``    ``public` `graph(``int` `vertices)``    ``{``        ``this``.vertices = vertices;``        ``adjacency_matrix = ``new` `int``[vertices, vertices];``    ``}` `    ``public` `void` `insert(``int` `source, ``int` `destination)``    ``{``        ``// make adjacency_matrix[i,j] = 1 if there is``        ``// an edge from i to j``        ``adjacency_matrix = 1;``    ``}` `    ``public` `bool` `issink(``int` `i)``    ``{``        ``for` `(``int` `j = 0 ; j < vertices ; j++)``        ``{``            ``// if any element in the row i is 1, it means``            ``// that there is an edge emanating from the``            ``// vertex, which means it cannot be a sink``            ``if` `(adjacency_matrix[i, j] == 1)``                ``return` `false``;` `            ``// if any element other than i in the column``            ``// i is 0, it means that there is no edge from``            ``// that vertex to the vertex we are testing``            ``// and hence it cannot be a sink``            ``if` `(adjacency_matrix[j, i] == 0 && j != i)``                ``return` `false``;``        ``}``        ``//if none of the checks fails, return true``        ``return` `true``;``    ``}` `    ``// we will eliminate n-1 non sink vertices so that``    ``// we have to check for only one vertex instead of``    ``// all n vertices``    ``public` `int` `eliminate()``    ``{``        ``int` `i = 0, j = 0;``        ``while` `(i < vertices && j < vertices)``        ``{``            ``// If the index is 1, increment the row we are``            ``// checking by 1``            ``// else increment the column``            ``if` `(adjacency_matrix[i, j] == 1)``                ``i = i + 1;``            ``else``                ``j = j + 1;` `        ``}` `        ``// If i exceeds the number of vertices, it``        ``// means that there is no valid vertex in``        ``// the given vertices that can be a sink``        ``if` `(i > vertices)``            ``return` `-1;``        ``else` `if` `(!issink(i))``            ``return` `-1;``        ``else` `return` `i;``    ``}``}` `public` `class` `Sink``{``    ``public` `static` `void` `Main(String[] args)``    ``{``        ``int` `number_of_vertices = 6;``        ``graph g = ``new` `graph(number_of_vertices);``        ``/*``        ``//input set 1``        ``g.insert(1, 6);``        ``g.insert(2, 6);``        ``g.insert(3, 6);``        ``g.insert(4, 6);``        ``g.insert(5, 6);``        ``*/``        ``//input set 2``        ``g.insert(1, 6);``        ``g.insert(2, 3);``        ``g.insert(2, 4);``        ``g.insert(4, 3);``        ``g.insert(5, 3);` `        ``int` `vertex = g.eliminate();` `        ``// returns 0 based indexing of vertex. returns``        ``// -1 if no sink exits.``        ``// returns the vertex number-1 if sink is found``        ``if` `(vertex >= 0)``            ``Console.WriteLine(``"Sink found at vertex "``                                    ``+ (vertex + 1));``        ``else``            ``Console.WriteLine(``"No Sink"``);``    ``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output

`No Sink`

This program eliminates non-sink vertices in O(n) complexity and checks for the sink property in O(n) complexity.

Time complexity: O(V^2)

We have used a 2-D array of size V x V to store the adjacency matrix of the given graph. The time complexity of the algorithm is O(V^2) as we need to traverse the complete adjacency matrix to find the sink vertex.

Time complexity: O(V^2)

The space complexity of the algorithm is also O(V^2) since we need to store the adjacency matrix.

You may also try The Celebrity Problem, which is an application of this concept

This article is contributed by Deepak Srivatsav. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.