Hypergeometric Distribution Model is used for estimating the number of faults initially resident in a program at the beginning of the test or debugging process based on the hypergeometric distribution. Let be the cumulative number of errors already detected so far by , and let be the number of newly detected errors by time .

**Assumptions:**

- A program initially contains m faults when the test phase starts.
- A test is defined as a number of test instances which are couples of input data and output data. In other words, the collection of test operations performed in a day or a week is called a test instance. The test instances are denoted by for i = 1, 2, . . ., n.
- Detected faults are not removed between test instances.

Therefore, from the latter assumption, the same faults can be experienced at several test instances. Let be the number of faults experienced by test instance . It should be noted that some of the faults may be those that are already counted in , and the remaining Wi faults account for the newly detected faults.

If is an observed instance of , then we can see that . Each fault can be classified into one of two categories:

- Newly discovered faults
- Rediscovered faults

If we assume that the number of newly detected faults follows a hypergeometric distribution, then the probability of obtaining exactly newly detected faults among faults is,

where

and

for all i. Since is assumed to be hypergeometrically distributed, the expected number of newly detected faults during the interval is,

and the expected value of is given by,

where

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Mathematics | Probability Distributions Set 3 (Normal Distribution)
- Mathematics | Probability Distributions Set 1 (Uniform Distribution)
- Mathematics | Probability Distributions Set 5 (Poisson Distribution)
- Mathematics | Probability Distributions Set 4 (Binomial Distribution)
- Mathematics | Probability Distributions Set 2 (Exponential Distribution)
- Software Engineering | Pham-Nordmann-Zhang Model (PNZ model)
- Difference between Prototype Model and Spiral Model
- Difference between Waterfall model and Incremental model
- Difference between E-R Model and Relational Model in DBMS
- Difference between Waterfall Model and Spiral Model
- Difference between V-model and Waterfall model
- Difference between RAD Model and Waterfall Model
- Difference between Agile Model and V-Model
- Student's t-distribution in Statistics
- TCP/IP Model
- Mathematics | Generalized PnC Set 1
- Mathematics | Probability
- Mathematics | Generalized PnC Set 2
- When should you use Waterfall Model
- Introduction of ER Model

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.