Find minimum weight cycle in an undirected graph

Given a positive weighted undirected graph, find the minimum weight cycle in it.

Examples:

minimum_cycle

Minimum weighted cycle is :
minimum_cycle
Minimum weighed cycle : 7 + 1 + 6 = 14 or 
                        2 + 6 + 2 + 4 = 14

The idea is to use shortest path algorithm. We one by one remove every edge from the graph, then we find the shortest path between two corner vertices of it. We add an edge back before we process the next edge.

1). create an empty vector 'edge' of size 'E'
   ( E total number of edge). Every element of 
   this vector is used to store information of 
   all the edge in graph info 

2) Traverse every edge edge[i] one - by - one 
    a). First remove 'edge[i]' from graph 'G'
    b). get current edge vertices which we just 
         removed from graph 
    c). Find the shortest path between them 
        "Using Dijkstra’s shortest path algorithm "
    d). To make a cycle we add the weight of the 
        removed edge to the shortest path.
    e). update min_weight_cycle  if needed 
3). return minimum weighted cycle  

Below c++ implementation of above idea



filter_none

edit
close

play_arrow

link
brightness_4
code

// c++ program to find shortest weighted
// cycle in undirected graph
#include<bits/stdc++.h>
using namespace std;
# define INF 0x3f3f3f3f
struct Edge
{
    int u;
    int v;
    int weight;
};
  
// weighted undirected Graph
class Graph
{
    int V ;
    list < pair <int, int > >*adj;
  
    // used to store all edge information
    vector < Edge > edge;
  
public :
    Graph( int V )
    {
        this->V = V ;
        adj = new list < pair <int, int > >[V];
    }
  
    void addEdge ( int u, int v, int w );
    void removeEdge( int u, int v, int w );
    int  ShortestPath (int u, int v );
    void RemoveEdge( int u, int v );
    int FindMinimumCycle ();
  
};
  
//function add edge to graph
void Graph :: addEdge ( int u, int v, int w )
{
    adj[u].push_back( make_pair( v, w ));
    adj[v].push_back( make_pair( u, w ));
  
    // add Edge to edge list
    Edge e { u, v, w };
    edge.push_back (  e );
}
  
// function remove edge from  undirected graph
void Graph :: removeEdge ( int u, int v, int w )
{
    adj[u].remove(make_pair( v, w ));
    adj[v].remove(make_pair(u, w ));
}
  
// find the shortest path from source to sink using
// Dijkstra’s shortest path algorithm [ Time complexity
// O(E logV  )]
int Graph :: ShortestPath ( int u, int v )
{
    // Create a set to store vertices that are being
    // preprocessed
    set< pair<int, int> > setds;
  
    // Create a vector for distances and initialize all
    // distances as infinite (INF)
    vector<int> dist(V, INF);
  
    // Insert source itself in Set and initialize its
    // distance as 0.
    setds.insert(make_pair(0, u));
    dist[u] = 0;
  
    /* Looping till all shortest distance are finalized
    then setds will become empty */
    while (!setds.empty())
    {
        // The first vertex in Set is the minimum distance
        // vertex, extract it from set.
        pair<int, int> tmp = *(setds.begin());
        setds.erase(setds.begin());
  
        // vertex label is stored in second of pair (it
        // has to be done this way to keep the vertices
        // sorted distance (distance must be first item
        // in pair)
        int u = tmp.second;
  
        // 'i' is used to get all adjacent vertices of
        // a vertex
        list< pair<int, int> >::iterator i;
        for (i = adj[u].begin(); i != adj[u].end(); ++i)
        {
            // Get vertex label and weight of current adjacent
            // of u.
            int v = (*i).first;
            int weight = (*i).second;
  
            // If there is shorter path to v through u.
            if (dist[v] > dist[u] + weight)
            {
                /* If the distance of v is not INF then it must be in
                    our set, so removing it and inserting again
                    with updated less distance.
                    Note : We extract only those vertices from Set
                    for which distance is finalized. So for them,
                    we would never reach here. */
                if (dist[v] != INF)
                    setds.erase(setds.find(make_pair(dist[v], v)));
  
                // Updating distance of v
                dist[v] = dist[u] + weight;
                setds.insert(make_pair(dist[v], v));
            }
        }
    }
  
    // return shortest path from current source to sink
    return dist[v] ;
}
  
// function return minimum weighted cycle
int Graph :: FindMinimumCycle ( )
{
    int min_cycle = INT_MAX;
    int E = edge.size();
    for ( int i = 0 ; i < E  ; i++ )
    {
        // current Edge information
        Edge e = edge[i];
  
        // get current edge vertices which we currently
        // remove from graph and then find shortest path
        // between these two vertex using Dijkstra’s
        // shortest path algorithm .
        removeEdge( e.u, e.v, e.weight ) ;
  
        // minimum distance between these two vertices
        int distance = ShortestPath( e.u, e.v );
  
        // to make a cycle we have to add weight of
        // currently removed edge if this is the shortest
        // cycle then update min_cycle
        min_cycle = min( min_cycle, distance + e.weight );
  
        //  add current edge back to the graph
        addEdge( e.u, e.v, e.weight );
    }
  
    // return shortest cycle
    return min_cycle ;
}
  
// driver program to test above function
int main()
{
    int V = 9;
    Graph g(V);
  
    // making above shown graph
    g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);
  
    cout << g.FindMinimumCycle() << endl;
    return 0;
}

chevron_right


Output:

14

Time Complexity: O( E ( E log V ) )
For every edge, we run Dijkstra’s shortest path algorithm so over all time complexity E2logV.
In set 2 | we will discuss optimize the algorithm to find a minimum weight cycle in undirected graph.
This article is contributed by Nishant Singh . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.




My Personal Notes arrow_drop_up

Improved By : Saksham Bhardwaj