Open In App
Related Articles

Designing Deterministic Finite Automata (Set 1)

Improve Article
Improve
Save Article
Save
Like Article
Like

Java




// dfa that accepts atleast 2 strings or more
// alphabet = {a,b}
import java.util.*;
public class Main {
    // initialize dfa variable
    // A=0,B=1,C=2
    static int dfa = 0;
    // method for state A
    static void stateA(char n)
    {
        /*here if char is a or b
        there is a transition
        from stateA to StateB*/
        if ((n == 'a') || (n == 'A') || (n == 'b')
            || (n == 'B'))
            dfa = 1;
    }
    static void stateB(char n)
    {
        /*here if char is a or b
     there is a transition
     from stateB to StateC*/
        if ((n == 'a') || (n == 'A') || (n == 'b')
            || (n == 'B'))
            dfa = 2;
    }
    static void stateC(char n)
    {
        /*here if char is a or b
        transition remains in stateC*/
        if ((n == 'a') || (n == 'A') || (n == 'b')
            || (n == 'B'))
            dfa = 2;
    }
    // checking each character's acceptance
    static boolean isAccept(String strr)
    {
        // convert string to character array
        char str[] = strr.toCharArray();
        for (int i = 0; i < str.length; i++) {
            if (dfa == 0)
                stateA(str[i]);
            else if (dfa == 1)
                stateB(str[i]);
            else
                stateC(str[i]);
        }
        return (dfa == 2);
        // since stateC is final state
    }
    public static void main(String[] args)
    {
        String str1 = "a";
        // checking if string is accepted
        if (isAccept(str1) == true)
            System.out.println("Accepted");
        else
            System.out.println("not Accepted");
        String str2 = "abababab";
        // checking if string is accepted
        if (isAccept(str2) == true)
            System.out.println("Accepted");
        else
            System.out.println("not Accepted");
    }
}


C++




// dfa that accepts atleast 2 strings or more
// alphabet = {a,b}
#include <iostream>
#include <string>
 
using namespace std;
 
// initialize dfa variable
// A=0,B=1,C=2
int dfa = 0;
// function for state A
void stateA(char n)
{
    /*here if char is a or b
    there is a transition
    from stateA to StateB*/
    if ((n == 'a') || (n == 'A') || (n == 'b')
        || (n == 'B'))
        dfa = 1;
}
// function for state B
void stateB(char n)
{
    /*here if char is a or b
 there is a transition
 from stateB to StateC*/
    if ((n == 'a') || (n == 'A') || (n == 'b')
        || (n == 'B'))
        dfa = 2;
}
// function for state C
void stateC(char n)
{
    /*here if char is a or b
    transition remains in stateC*/
    if ((n == 'a') || (n == 'A') || (n == 'b')
        || (n == 'B'))
        dfa = 2;
}
// checking each character's acceptance
bool isAccept(string strr)
{
    // convert string to character array
    // create a new array of chars to copy to (+1 for a null
    // terminator)
    char* str = new char[strr.length() + 1];
    // make sure that the new string is null terminated
    str[strr.length()] = '\0';
    for (int i = 0; i < strr.length(); i++) {
        str[i] = strr[i];
        if (dfa == 0)
            stateA(str[i]);
        else if (dfa == 1)
            stateB(str[i]);
        else
            stateC(str[i]);
    }
    return (dfa == 2);
    // since stateC is final state
}
int main()
{
    string str1 = "a";
    // checking if string is accepted
    if (isAccept(str1) == true)
        cout << "Accepted" << endl;
    else
        cout << "not Accepted" << endl;
    string str2 = "abababab";
    // checking if string is accepted
    if (isAccept(str2) == true)
        cout << "Accepted" << endl;
    else
        cout << "not Accepted" << endl;
    return 0;
}


Prerequisite – Designing finite automata In this article, we will see some designing of Deterministic Finite Automata (DFA). 

Problem-1: Construction of a DFA for the set of string over {a, b} such that length of the string |w|=2 i.e, length of the string is exactly 2. Explanation – The desired language will be like:

L = {aa, ab, ba, bb} 

The state transition diagram of the language will be like: Here, State A represent set of all string of length zero (0), state B represent set of all string of length one (1), state C represent set of all string of length two (2). State C is the final state and D is the dead state it is so because after getting any alphabet as input it will not go into final state ever.

Number of states: n+2
Where n is |w|=n 

The above automata will accept all the strings having the length of the string exactly 2. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to C and when the length of the string is greater than 2, then it will go from state C to D (Dead state) and after it from state D TO D itself. 

Python3




#check string in
#in state A
def checkStateA(n):
     
    #if length of
    #string is one
    #print not accepted
    if(len(n)==1):
        print("string not accepted")
    else:  
        #pass string to stateB to
        #to check further transitions
        if(n[0]=='a' or n[0]=='b'):
            stateB(n[1:])
             
             
def stateB(n):
    #here if length
    #is not 1 print#string not accepted
    if(len(n)!=1):
        print("string not accepted")
    else:
        #else pass string
        #to state c
        stateC(n[1:])
def stateC(n):
    #here if length
    #becomes zero
    #print accepted
    #else not accepted
    if (len(n)==0):
        print("string accepted")
    else:
        print("string not accepted")
     
     
#take input   
n=input()
checkStateA(n)


Problem-2: Construction of a DFA for the set of string over {a, b} such that length of the string |w|>=2 i.e, length of the string should be at least 2. Explanation – The desired language will be like:

L = {aa, ab, ba, bb, aaa, aab, aba, abb........} 

The state transition diagram of the language will be like: Here, State A represent set of all string of length zero (0), state B represent set of all string of length one (1), and state C represent set of all string of length two (2).

Number of states: n+1
Where n is |w|>=n 

The above automata will accept all the strings having the length of the string at least 2. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to C and lastly when the length of the string is greater than 2, then it will go from state C to C itself. 

Python3




#check string in
#in state A
def checkStateA(n):
     
    #if length of
    #string is one
    #print not accepted
    if(len(n)==1):
        print("string not accepted")
    else:  
        #pass string to stateB to
        #to check further transitions
        if(n[0]=='a' or n[0]=='b'):
            stateB(n[1:])
             
             
def stateB(n):
     
    #here if length
    #is less than 1
    #printstring not accepted
    if(len(n)<1):
        print("string not accepted")
    else:
         
        #else pass string
        #to state c
        stateC(n[1:])
         
         
def stateC(n):
    #here if length of string
    #is greater than equal to zero
    #print accepted
    #else not accepted
    if (len(n)>=0):
        print("string accepted")
    else:
        print("string not accepted")
     
     
#take input   
n=input()
checkStateA(n)


Problem-3: Construction of a DFA for the set of string over {a, b} such that length of the string |w|<=2 i.e, length of the string is atmost 2.
Explanation – The desired language will be like:

L = {?, aa, ab, ba, bb} 

The state transition diagram of the language will be like:  

Here, State A represent set of all string of length zero (0), state B represent set of all string of length one (1), state C represent set of all string of length two (2), state A, B, C is the final state and D is the dead state it is so because after getting any alphabet as input it will not go into final state ever.

Number of states: n+2
Where n is |w|<=n 

The above automata will accept all the strings having the length of the string at most 2. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to C and lastly when the length of the string is greater than 2, then it will go from state C to D (Dead state). 

Python3




#check string in
#in state A
def checkStateA(n):
     
    #if only two transition occurs
    #then print string accepted
   
    if(n[0]=='a' or n[0]=='b'):
        stateB(n[1:])
             
             
def stateB(n):
     
    #if length is 0
    #print accepted
    if(len(n)==0):
        print("string accepted")
    else:
        stateC(n[1:])
         
         
def stateC(n):
    #if length is 0
    #print accepted
    #else not accepted
    if (len(n)==0):
        print("string accepted")
    else:
        print("string not accepted")
     
     
#take input   
n=input()
checkStateA(n)



Level Up Your GATE Prep!
Embark on a transformative journey towards GATE success by choosing Data Science & AI as your second paper choice with our specialized course. If you find yourself lost in the vast landscape of the GATE syllabus, our program is the compass you need.

Last Updated : 31 Aug, 2023
Like Article
Save Article
Previous
Next
Similar Reads