An NFA can have zero, one or more than one move from a given state on a given input symbol. An NFA can also have NULL moves (moves without input symbol). On the other hand, DFA has one and only one move from a given state on a given input symbol.

**Conversion from NFA to DFA**

Suppose there is an NFA N < Q, ∑, q0, δ, F > which recognizes a language L. Then the DFA D < Q’, ∑, q0, δ’, F’ > can be constructed for language L as:

Step 1: Initially Q’ = ɸ.

Step 2: Add q0 to Q’.

Step 3: For each state in Q’, find the possible set of states for each input symbol using transition function of NFA. If this set of states is not in Q’, add it to Q’.

Step 4: Final state of DFA will be all states with contain F (final states of NFA)

**Example**

Consider the following NFA shown in Figure 1.

Following are the various parameters for NFA.

Q = { q0, q1, q2 }

∑ = ( a, b )

F = { q2 }

δ (Transition Function of NFA)

Step 1: Q’ = ɸ

Step 2: Q’ = {q0}

Step 3: For each state in Q’, find the states for each input symbol.

Currently, state in Q’ is q0, find moves from q0 on input symbol a and b using transition function of NFA and update the transition table of DFA.

δ’ (Transition Function of DFA)

Now { q0, q1 } will be considered as a single state. As its entry is not in Q’, add it to Q’.

So Q’ = { q0, { q0, q1 } }

Now, moves from state { q0, q1 } on different input symbols are not present in transition table of DFA, we will calculate it like:

δ’ ( { q0, q1 }, a ) = δ ( q0, a ) ∪ δ ( q1, a ) = { q0, q1 }

δ’ ( { q0, q1 }, b ) = δ ( q0, b ) ∪ δ ( q1, b ) = { q0, q2 }

Now we will update the transition table of DFA.

δ’ (Transition Function of DFA)

Now { q0, q2 } will be considered as a single state. As its entry is not in Q’, add it to Q’.

So Q’ = { q0, { q0, q1 }, { q0, q2 } }

Now, moves from state {q0, q2} on different input symbols are not present in transition table of DFA, we will calculate it like:

δ’ ( { q0, q2 }, a ) = δ ( q0, a ) ∪ δ ( q2, a ) = { q0, q1 }

δ’ ( { q0, q2 }, b ) = δ ( q0, b ) ∪ δ ( q2, b ) = { q0 }

Now we will update the transition table of DFA.

δ’ (Transition Function of DFA)

As there is no new state generated, we are done with the conversion. Final state of DFA will be state which has q2 as its component i.e., { q0, q2 }

Following are the various parameters for DFA.

Q’ = { q0, { q0, q1 }, { q0, q2 } }

∑ = ( a, b )

F = { { q0, q2 } } and transition function δ’ as shown above. The final DFA for above NFA has been shown in Figure 2.

**Note :** Sometimes, it is not easy to convert regular expression to DFA. First you can convert regular expression to NFA and then NFA to DFA.

**Question :** The number of states in the minimal deterministic finite automaton corresponding to the regular expression (0 + 1)* (10) is ____________.

**Solution :** First, we will make an NFA for the above expression. To make an NFA for (0 + 1)*, NFA will be in same state q0 on input symbol 0 or 1. Then for concatenation, we will add two moves (q0 to q1 for 1 and q1 to q2 for 0) as shown in Figure 3.

This article has been contributed by Sonal Tuteja.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.

## Recommended Posts:

- Conversion of Epsilon-NFA to NFA
- Program to Implement NFA with epsilon move to DFA Conversion
- Difference between DFA and NFA
- Hypothesis (language regularity) and algorithm (L-graph to NFA) in TOC
- Regular expression to ∈-NFA
- NFA machines accepting all strings that ends or not ends with substring 'ab'
- NFA to accept strings that has atleast one character occurring in a multiple of 3
- NFA which accepts set of strings over an alphabet {0, 1, 2} such that the final digit has appeared before
- NFA for language at least one of the symbols occurring an odd number of times
- Minimization of DFA
- DFA for accepting the language L = { a
^{n}b^{m}| n+m=even } - DFA in LEX code which accepts even number of zeros and even number of ones
- DFA for Strings not ending with "THE"
- DFA of a string with at least two 0’s and at least two 1’s
- Union process in DFA
- DFA machines accepting odd number of 0’s or/and even number of 1’s
- Concatenation process in DFA
- Complementation process in DFA
- DFA of a string in which 2nd symbol from RHS is 'a'
- Reversal process in DFA