A number ‘n’ is called Bleak if it cannot be represented as sum of a positive number x and set bit count in x, i.e., x + countSetBits(x) is not equal to n for any non-negative number x.
Examples :
Input : n = 3 Output : false 3 is not Bleak as it can be represented as 2 + countSetBits(2). Input : n = 4 Output : true 4 is t Bleak as it cannot be represented as sum of a number x and countSetBits(x) for any number x.
Method 1 (Simple)
bool isBleak(n) 1) Consider all numbers smaller than n a) If x + countSetBits(x) == n return false 2) Return true
Below is the implementation of the simple approach.
C++
// A simple C++ program to check Bleak Number #include <bits/stdc++.h> using namespace std; /* Function to get no of set bits in binary representation of passed binary no. */ int countSetBits( int x) { unsigned int count = 0; while (x) { x &= (x - 1); count++; } return count; } // Returns true if n is Bleak bool isBleak( int n) { // Check for all numbers 'x' smaller // than n. If x + countSetBits(x) // becomes n, then n can't be Bleak for ( int x = 1; x < n; x++) if (x + countSetBits(x) == n) return false ; return true ; } // Driver code int main() { isBleak(3) ? cout << "Yes\n" : cout << "No\n" ; isBleak(4) ? cout << "Yes\n" : cout << "No\n" ; return 0; } |
Java
// A simple Java program to check Bleak Number import java.io.*; class GFG { /* Function to get no of set bits in binary representation of passed binary no. */ static int countSetBits( int x) { int count = 0 ; while (x != 0 ) { x &= (x - 1 ); count++; } return count; } // Returns true if n is Bleak static boolean isBleak( int n) { // Check for all numbers 'x' smaller // than n. If x + countSetBits(x) // becomes n, then n can't be Bleak for ( int x = 1 ; x < n; x++) if (x + countSetBits(x) == n) return false ; return true ; } // Driver code public static void main(String args[]) { if (isBleak( 3 )) System.out.println( "Yes" ); else System.out.println( "No" ); if (isBleak( 4 )) System.out.println( "Yes" ); else System.out.println( "No" ); } } /*This code is contributed by Nikita Tiwari.*/ |
Python3
# A simple Python 3 program # to check Bleak Number # Function to get no of set # bits in binary # representation of passed # binary no. def countSetBits(x) : count = 0 while (x) : x = x & (x - 1 ) count = count + 1 return count # Returns true if n # is Bleak def isBleak(n) : # Check for all numbers 'x' # smaller than n. If x + # countSetBits(x) becomes # n, then n can't be Bleak. for x in range ( 1 , n) : if (x + countSetBits(x) = = n) : return False return True # Driver code if (isBleak( 3 )) : print ( "Yes" ) else : print ( "No" ) if (isBleak( 4 )) : print ( "Yes" ) else : print ( "No" ) # This code is contributed by Nikita Tiwari. |
C#
// A simple C# program to check // Bleak Number using System; class GFG { /* Function to get no of set bits in binary representation of passed binary no. */ static int countSetBits( int x) { int count = 0; while (x != 0) { x &= (x - 1); count++; } return count; } // Returns true if n is Bleak static bool isBleak( int n) { // Check for all numbers // 'x' smaller than n. If // x + countSetBits(x) // becomes n, then n can't // be Bleak for ( int x = 1; x < n; x++) if (x + countSetBits(x) == n) return false ; return true ; } // Driver code public static void Main() { if (isBleak(3)) Console.Write( "Yes" ); else Console.WriteLine( "No" ); if (isBleak(4)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by // Nitin mittal |
PHP
<?php // A simple PHP program // to check Bleak Number // Function to get no of // set bits in binary // representation of // passed binary no. function countSetBits( $x ) { $count = 0; while ( $x ) { $x &= ( $x - 1); $count ++; } return $count ; } // Returns true if n is Bleak function isBleak( $n ) { // Check for all numbers 'x' smaller // than n. If x + countSetBits(x) // becomes n, then n can't be Bleak for ( $x = 1; $x < $n ; $x ++) if ( $x + countSetBits( $x ) == $n ) return false; return true; } // Driver code if (isBleak(3)) echo "Yes\n" ; else echo "No\n" ; if (isBleak(4)) echo "Yes\n" ; else echo "No\n" ; // This code is contributed by anuj_67. ?> |
Output :
No Yes
Time complexity of above solution is O(n Log n).
Method 2 (Efficient)
The idea is based on the fact that the largest count of set bits in any number smaller than n cannot exceed ceiling of Log2n. So we need to check only numbers from range n – ceilingLog2(n) to n.
bool isBleak(n) 1) Consider all numbers n - ceiling(Log2n) to n-1 a) If x + countSetBits(x) == n return false 2) Return true
Below is the implementation of the idea.
C++
// An efficient C++ program to check Bleak Number #include <bits/stdc++.h> using namespace std; /* Function to get no of set bits in binary representation of passed binary no. */ int countSetBits( int x) { unsigned int count = 0; while (x) { x &= (x - 1); count++; } return count; } // A function to return ceiling of log x // in base 2. For example, it returns 3 // for 8 and 4 for 9. int ceilLog2( int x) { int count = 0; x--; while (x > 0) { x = x >> 1; count++; } return count; } // Returns true if n is Bleak bool isBleak( int n) { // Check for all numbers 'x' smaller // than n. If x + countSetBits(x) // becomes n, then n can't be Bleak for ( int x = n - ceilLog2(n); x < n; x++) if (x + countSetBits(x) == n) return false ; return true ; } // Driver code int main() { isBleak(3) ? cout << "Yes\n" : cout << "No\n" ; isBleak(4) ? cout << "Yes\n" : cout << "No\n" ; return 0; } |
Java
// An efficient Java program to // check Bleak Number import java.io.*; class GFG { /* Function to get no of set bits in binary representation of passed binary no. */ static int countSetBits( int x) { int count = 0 ; while (x != 0 ) { x &= (x - 1 ); count++; } return count; } // A function to return ceiling of log x // in base 2. For example, it returns 3 // for 8 and 4 for 9. static int ceilLog2( int x) { int count = 0 ; x--; while (x > 0 ) { x = x >> 1 ; count++; } return count; } // Returns true if n is Bleak static boolean isBleak( int n) { // Check for all numbers 'x' smaller // than n. If x + countSetBits(x) // becomes n, then n can't be Bleak for ( int x = n - ceilLog2(n); x < n; x++) if (x + countSetBits(x) == n) return false ; return true ; } // Driver code public static void main(String[] args) { if (isBleak( 3 )) System.out.println( "Yes" ); else System.out.println( "No" ); if (isBleak( 4 )) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Prerna Saini |
Python3
# An efficient Python 3 program # to check Bleak Number import math # Function to get no of set # bits in binary representation # of passed binary no. def countSetBits(x) : count = 0 while (x) : x = x & (x - 1 ) count = count + 1 return count # A function to return ceiling # of log x in base 2. For # example, it returns 3 for 8 # and 4 for 9. def ceilLog2(x) : count = 0 x = x - 1 while (x > 0 ) : x = x>> 1 count = count + 1 return count # Returns true if n is Bleak def isBleak(n) : # Check for all numbers 'x' # smaller than n. If x + # countSetBits(x) becomes n, # then n can't be Bleak for x in range ((n - ceilLog2(n)), n) : if (x + countSetBits(x) = = n) : return False return True # Driver code if (isBleak( 3 )) : print ( "Yes" ) else : print ( "No" ) if (isBleak( 4 )) : print ( "Yes" ) else : print ( "No" ) # This code is contributed by Nikita Tiwari. |
C#
// An efficient C# program to check // Bleak Number using System; class GFG { /* Function to get no of set bits in binary representation of passed binary no. */ static int countSetBits( int x) { int count = 0; while (x != 0) { x &= (x - 1); count++; } return count; } // A function to return ceiling // of log x in base 2. For // example, it returns 3 for 8 // and 4 for 9. static int ceilLog2( int x) { int count = 0; x--; while (x > 0) { x = x >> 1; count++; } return count; } // Returns true if n is Bleak static bool isBleak( int n) { // Check for all numbers // 'x' smaller than n. If // x + countSetBits(x) // becomes n, then n // can't be Bleak for ( int x = n - ceilLog2(n); x < n; x++) if (x + countSetBits(x) == n) return false ; return true ; } // Driver code public static void Main() { if (isBleak(3)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); if (isBleak(4)) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } } // This code is contributed by anuj_67. |
PHP
<?php // An efficient PHP program // to check Bleak Number /* Function to get no of set bits in binary representation of passed binary no. */ function countSetBits( $x ) { $count = 0; while ( $x ) { $x &= ( $x - 1); $count ++; } return $count ; } // A function to return ceiling of log x // in base 2. For example, it returns 3 // for 8 and 4 for 9. function ceilLog2( $x ) { $count = 0; $x --; while ( $x > 0) { $x = $x >> 1; $count ++; } return $count ; } // Returns true if n is Bleak function isBleak( $n ) { // Check for all numbers 'x' smaller // than n. If x + countSetBits(x) // becomes n, then n can't be Bleak for ( $x = $n - ceilLog2( $n ); $x < $n ; $x ++) if ( $x + countSetBits( $x ) == $n ) return false; return true; } // Driver code if (isBleak(3)) echo "Yes\n" ; else echo "No\n" ; if (isBleak(4)) echo "Yes\n" ; else echo "No\n" ; // This code is contributed by anuj_67 ?> |
Output :
No Yes
Time Complexity: O(Log n * Log n)
Note: In GCC, we can directly count set bits using __builtin_popcount(). So we can avoid a separate function for counting set bits.
// C++ program to demonstrate __builtin_popcount() #include <iostream> using namespace std; int main() { cout << __builtin_popcount(4) << endl; cout << __builtin_popcount(15); return 0; } |
Output :
1 4
This article is contributed by Rahuain. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.