Open In App
Related Articles

Smallest of three integers without comparison operators

Improve Article
Improve
Save Article
Save
Like Article
Like

Write a program to find the smallest of three integers, without using any of the comparison operators. 
Let 3 input numbers be x, y and z.
Method 1 (Repeated Subtraction) 
Take a counter variable c and initialize it with 0. In a loop, repeatedly subtract x, y and z by 1 and increment c. The number which becomes 0 first is the smallest. After the loop terminates, c will hold the minimum of 3. 
 

C++




// C++ program to find Smallest
// of three integers without
// comparison operators
#include <bits/stdc++.h>
using namespace std;
int smallest(int x, int y, int z)
{
    int c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
 
// Driver Code
int main()
{
    int x = 12, y = 15, z = 5;
    cout << "Minimum of 3 numbers is "
         << smallest(x, y, z);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai


C




// C program to find Smallest
// of three integers without
// comparison operators
#include <stdio.h>
 
int smallest(int x, int y, int z)
{
    int c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
 
int main()
{
    int x = 12, y = 15, z = 5;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}


Java




// Java program to find Smallest
// of three integers without
// comparison operators
class GFG {
 
    static int smallest(int x, int y, int z)
    {
        int c = 0;
 
        while (x != 0 && y != 0 && z != 0) {
            x--;
            y--;
            z--;
            c++;
        }
 
        return c;
    }
 
    public static void main(String[] args)
    {
        int x = 12, y = 15, z = 5;
 
        System.out.printf("Minimum of 3"
                              + " numbers is %d",
                          smallest(x, y, z));
    }
}
 
// This code is contributed by  Smitha Dinesh Semwal.


Python3




# Python3 program to find Smallest
# of three integers without
# comparison operators
 
def smallest(x, y, z):
    c = 0
     
    while ( x and y and z ):
        x = x-1
        y = y-1
        z = z-1
        c = c + 1
 
    return c
 
# Driver Code
x = 12
y = 15
z = 5
print("Minimum of 3 numbers is",
       smallest(x, y, z))
 
# This code is contributed by Anshika Goyal


C#




// C# program to find Smallest of three
// integers without comparison operators
using System;
 
class GFG {
    static int smallest(int x, int y, int z)
    {
        int c = 0;
 
        while (x != 0 && y != 0 && z != 0) {
            x--;
            y--;
            z--;
            c++;
        }
 
        return c;
    }
 
    // Driver Code
    public static void Main()
    {
        int x = 12, y = 15, z = 5;
 
        Console.Write("Minimum of 3"
                      + " numbers is " + smallest(x, y, z));
    }
}
 
// This code is contributed by Sam007


PHP




<?php
// php program to find Smallest
// of three integers without
// comparison operators
function smallest($x, $y, $z)
{
    $c = 0;
    while ( $x && $y && $z )
    {
        $x--; $y--; $z--; $c++;
    }
     
    return $c;
}
 
// Driver code
$x = 12;
$y = 15;
$z = 5;
echo "Minimum of 3 numbers is ".
             smallest($x, $y, $z);
 
// This code is contributed by Sam007
?>


Javascript




<script>
 
// JavaScript program to find Smallest
// of three integers without
// comparison operators
 
function smallest(x, y, z)
{
    let c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
 
// Driver Code
 
let x = 12, y = 15, z = 5;
document.write("Minimum of 3 numbers is "
    + smallest(x, y, z));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

Minimum of 3 numbers is 5

Time Complexity: O(min(x, y, z))

Auxiliary Space: O(1)

This method doesn’t work for negative numbers. Method 2 works for negative numbers also.
Method 2 (Use Bit Operations) 
Use method 2 of this post to find minimum of two numbers (We can’t use Method 1 as Method 1 uses comparison operator). Once we have functionality to find minimum of 2 numbers, we can use this to find minimum of 3 numbers. 
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define CHAR_BIT 8
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Function to find minimum of 3 numbers x, y and z*/
int smallest(int x, int y, int z)
{
    return min(x, min(y, z));
}
 
// Driver code
int main()
{
    int x = 12, y = 15, z = 5;
    cout << "Minimum of 3 numbers is "  << smallest(x, y, z);
    return 0;
}
 
// This code is contributed by Code_Mech.


C




// C implementation of above approach
#include <stdio.h>
#define CHAR_BIT 8
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Function to find minimum of 3 numbers x, y and z*/
int smallest(int x, int y, int z)
{
    return min(x, min(y, z));
}
 
int main()
{
    int x = 12, y = 15, z = 5;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}


Java




// Java implementation of above approach
class GFG
{
     
static int CHAR_BIT = 8;
 
// Function to find minimum of x and y
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >>
               ((Integer.SIZE/8) * CHAR_BIT - 1)));
}
 
// Function to find minimum of 3 numbers x, y and z
static int smallest(int x, int y, int z)
{
    return Math.min(x, Math.min(y, z));
}
 
// Driver code
public static void main (String[] args)
{
    int x = 12, y = 15, z = 5;
    System.out.println("Minimum of 3 numbers is " +
                                smallest(x, y, z));
}
}
 
// This code is contributed by mits


Python3




# Python3 implementation of above approach
CHAR_BIT = 8
 
# Function to find minimum of x and y
def min(x, y):
    return y + ((x - y) & \
               ((x - y) >> (32 * CHAR_BIT - 1)))
 
# Function to find minimum
# of 3 numbers x, y and z
def smallest(x, y, z):
    return min(x, min(y, z))
 
# Driver code
x = 12
y = 15
z = 5
print("Minimum of 3 numbers is ",
               smallest(x, y, z))
 
# This code is contributed
# by Mohit Kumar


C#




// C# implementation of above approach
using System;
 
class GFG
{
     
static int CHAR_BIT=8;
 
/*Function to find minimum of x and y*/
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Function to find minimum of 3 numbers x, y and z*/
static int smallest(int x, int y, int z)
{
    return Math.Min(x, Math.Min(y, z));
}
 
// Driver code
static void Main()
{
    int x = 12, y = 15, z = 5;
    Console.WriteLine("Minimum of 3 numbers is "+smallest(x, y, z));
}
}
 
// This code is contributed by mits


Javascript




<script>
     
    let CHAR_BIT = 8;
    // Function to find minimum of x and y
    function min(x,y)
    {
        return y + ((x - y) & ((x - y) >> (32 * CHAR_BIT - 1)))
    }
    // Function to find minimum of 3 numbers x, y and z
    function smallest(x,y,z)
    {
         return Math.min(x, Math.min(y, z));
    }
     
    // Driver code
    let  x = 12, y = 15, z = 5;
     
    document.write("Minimum of 3 numbers is " +
                                smallest(x, y, z));
     
    // This code is contributed by avanitrachhadiya2155
     
</script>


Output: 

Minimum of 3 numbers is 5

Time Complexity: O(1)

Auxiliary Space: O(1)

Method 3 (Use Division operator) 
We can also use division operator to find minimum of two numbers. If value of (a/b) is zero, then b is greater than a, else a is greater. Thanks to gopinath and Vignesh for suggesting this method.
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Using division operator to find
// minimum of three numbers
int smallest(int x, int y, int z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
 
int main()
{
    int x = 78, y = 88, z = 68;
    cout << "Minimum of 3 numbers is " << smallest(x, y, z);
    return 0;
}
// this code is contributed by shivanisinghss2110


C




#include <stdio.h>
 
// Using division operator to find
// minimum of three numbers
int smallest(int x, int y, int z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
 
int main()
{
    int x = 78, y = 88, z = 68;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}


Java




// Java program of above approach
class GfG {
 
    // Using division operator to
    // find minimum of three numbers
    static int smallest(int x, int y, int z)
    {
        if ((y / x) != 1) // Same as "if (y < x)"
            return ((y / z) != 1) ? y : z;
        return ((x / z) != 1) ? x : z;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int x = 78, y = 88, z = 68;
        System.out.printf("Minimum of 3 numbers"
                              + " is %d",
                          smallest(x, y, z));
    }
}
 
// This code has been contributed by 29AjayKumar


python3




# Using division operator to find
# minimum of three numbers
def smallest(x, y, z):
 
    if (not (y / x)): # Same as "if (y < x)"
        return y if (not (y / z)) else z
    return x if (not (x / z)) else z
 
# Driver Code
if __name__== "__main__":
 
    x = 78
    y = 88
    z = 68
    print("Minimum of 3 numbers is",
                  smallest(x, y, z))
 
# This code is contributed
# by ChitraNayal


C#




// C# program of above approach
using System;
public class GfG {
 
    // Using division operator to
    // find minimum of three numbers
    static int smallest(int x, int y, int z)
    {
        if ((y / x) != 1) // Same as "if (y < x)"
            return ((y / z) != 1) ? y : z;
        return ((x / z) != 1) ? x : z;
    }
 
    // Driver code
    public static void Main()
    {
        int x = 78, y = 88, z = 68;
        Console.Write("Minimum of 3 numbers"
                          + " is {0}",
                      smallest(x, y, z));
    }
}
/* This code contributed by PrinciRaj1992 */


Javascript




<script>
 
// Javascript implementation of above approach
 
// Using division operator to find
// minimum of three numbers
function smallest(x, y, z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
 
 
    let x = 78, y = 88, z = 68;
    document.write("Minimum of 3 numbers is " + smallest(x, y, z));
 
// This is code is contributed by Mayank Tyagi
 
</script>


Output: 

Minimum of 3 numbers is 68

Time Complexity: O(1)

Auxiliary Space: O(1)

Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 12 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials