Smallest of three integers without comparison operators

Write a program to find the smallest of three integers, without using any of the comparison operators.

Let 3 input numbers be x, y and z.

Method 1 (Repeated Subtraction)
Take a counter variable c and initialize it with 0. In a loop, repeatedly subtract x, y and z by 1 and increment c. The number which becomes 0 first is the smallest. After the loop terminates, c will hold the minimum of 3.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find Smallest
// of three integers without
// comparison operators
#include <bits/stdc++.h>
using namespace std;
int smallest(int x, int y, int z)
{
    int c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
  
// Driver Code
int main()
{
    int x = 12, y = 15, z = 5;
    cout << "Minimum of 3 numbers is "
         << smallest(x, y, z);
    return 0;
}
  
// This code is contributed
// by Akanksha Rai

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to find Smallest
// of three integers without
// comparison operators
#include <stdio.h>
  
int smallest(int x, int y, int z)
{
    int c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
  
int main()
{
    int x = 12, y = 15, z = 5;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find Smallest
// of three integers without
// comparison operators
class GFG {
  
    static int smallest(int x, int y, int z)
    {
        int c = 0;
  
        while (x != 0 && y != 0 && z != 0) {
            x--;
            y--;
            z--;
            c++;
        }
  
        return c;
    }
  
    public static void main(String[] args)
    {
        int x = 12, y = 15, z = 5;
  
        System.out.printf("Minimum of 3"
                              + " numbers is %d",
                          smallest(x, y, z));
    }
}
  
// This code is contributed by  Smitha Dinesh Semwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find Smallest
# of three integers without 
# comparison operators
  
def smallest(x, y, z):
    c = 0
      
    while ( x and y and z ):
        x = x-1
        y = y-1
        z = z-1
        c = c + 1
  
    return c
  
# Driver Code
x = 12
y = 15
z = 5
print("Minimum of 3 numbers is",
       smallest(x, y, z))
  
# This code is contributed by Anshika Goyal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find Smallest of three
// integers without comparison operators
using System;
  
class GFG {
    static int smallest(int x, int y, int z)
    {
        int c = 0;
  
        while (x != 0 && y != 0 && z != 0) {
            x--;
            y--;
            z--;
            c++;
        }
  
        return c;
    }
  
    // Driver Code
    public static void Main()
    {
        int x = 12, y = 15, z = 5;
  
        Console.Write("Minimum of 3"
                      + " numbers is " + smallest(x, y, z));
    }
}
  
// This code is contributed by Sam007

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// php program to find Smallest
// of three integers without
// comparison operators
function smallest($x, $y, $z)
{
    $c = 0;
    while ( $x && $y && $z )
    {
        $x--; $y--; $z--; $c++;
    }
      
    return $c;
}
  
// Driver code
$x = 12;
$y = 15;
$z = 5;
echo "Minimum of 3 numbers is ".
             smallest($x, $y, $z);
  
// This code is contributed by Sam007
?>

chevron_right



Output:

Minimum of 3 numbers is 5

This method doesn’t work for negative numbers. Method 2 works for negative numbers also.





Method 2 (Use Bit Operations)
Use method 2 of this post to find minimum of two numbers (We can’t use Method 1 as Method 1 uses comparison operator). Once we have functionality to find minimum of 2 numbers, we can use this to find minimum of 3 numbers.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define CHAR_BIT 8
  
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
  
/* Function to find minimum of 3 numbers x, y and z*/
int smallest(int x, int y, int z)
{
    return min(x, min(y, z));
}
  
// Driver code
int main()
{
    int x = 12, y = 15, z = 5;
    cout << "Minimum of 3 numbers is "  << smallest(x, y, z);
    return 0;
}
  
// This code is contributed by Code_Mech.

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

// C implementation of above approach
#include <stdio.h>
#define CHAR_BIT 8
  
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
  
/* Function to find minimum of 3 numbers x, y and z*/
int smallest(int x, int y, int z)
{
    return min(x, min(y, z));
}
  
int main()
{
    int x = 12, y = 15, z = 5;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
class GFG
{
      
static int CHAR_BIT = 8;
  
// Function to find minimum of x and y
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> 
               ((Integer.SIZE/8) * CHAR_BIT - 1)));
}
  
// Function to find minimum of 3 numbers x, y and z
static int smallest(int x, int y, int z)
{
    return Math.min(x, Math.min(y, z));
}
  
// Driver code
public static void main (String[] args) 
{
    int x = 12, y = 15, z = 5;
    System.out.println("Minimum of 3 numbers is "
                                smallest(x, y, z));
}
}
  
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
CHAR_BIT = 8
  
# Function to find minimum of x and y
def min(x, y):
    return y + ((x - y) & \
               ((x - y) >> (32 * CHAR_BIT - 1)))
  
# Function to find minimum 
# of 3 numbers x, y and z
def smallest(x, y, z):
    return min(x, min(y, z))
  
# Driver code
x = 12
y = 15
z = 5
print("Minimum of 3 numbers is "
               smallest(x, y, z))
  
# This code is contributed
# by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
      
static int CHAR_BIT=8;
  
/*Function to find minimum of x and y*/
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
  
/* Function to find minimum of 3 numbers x, y and z*/
static int smallest(int x, int y, int z)
{
    return Math.Min(x, Math.Min(y, z));
}
  
// Driver code
static void Main()
{
    int x = 12, y = 15, z = 5;
    Console.WriteLine("Minimum of 3 numbers is "+smallest(x, y, z));
}
}
  
// This code is contributed by mits

chevron_right



Output:

Minimum of 3 numbers is 5

Method 3 (Use Division operator)
We can also use division operator to find minimum of two numbers. If value of (a/b) is zero, then b is greater than a, else a is greater. Thanks to gopinath and Vignesh for suggesting this method.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// Using division operator to find
// minimum of three numbers
int smallest(int x, int y, int z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
  
int main()
{
    int x = 78, y = 88, z = 68;
    cout << "Minimum of 3 numbers is " << smallest(x, y, z);
    return 0;
}
// this code is contributed by shivanisinghss2110

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <stdio.h>
  
// Using division operator to find
// minimum of three numbers
int smallest(int x, int y, int z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
  
int main()
{
    int x = 78, y = 88, z = 68;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program of above approach
class GfG {
  
    // Using division operator to
    // find minimum of three numbers
    static int smallest(int x, int y, int z)
    {
        if ((y / x) != 1) // Same as "if (y < x)"
            return ((y / z) != 1) ? y : z;
        return ((x / z) != 1) ? x : z;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int x = 78, y = 88, z = 68;
        System.out.printf("Minimum of 3 numbers"
                              + " is %d",
                          smallest(x, y, z));
    }
}
  
// This code has been contributed by 29AjayKumar

chevron_right


python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Using division operator to find
# minimum of three numbers
def smallest(x, y, z):
  
    if (not (y / x)): # Same as "if (y < x)"
        return y if (not (y / z)) else z
    return x if (not (x / z)) else z
  
# Driver Code
if __name__== "__main__":
  
    x = 78
    y = 88
    z = 68
    print("Minimum of 3 numbers is",
                  smallest(x, y, z))
  
# This code is contributed 
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program of above approach
using System;
public class GfG {
  
    // Using division operator to
    // find minimum of three numbers
    static int smallest(int x, int y, int z)
    {
        if ((y / x) != 1) // Same as "if (y < x)"
            return ((y / z) != 1) ? y : z;
        return ((x / z) != 1) ? x : z;
    }
  
    // Driver code
    public static void Main()
    {
        int x = 78, y = 88, z = 68;
        Console.Write("Minimum of 3 numbers"
                          + " is {0}",
                      smallest(x, y, z));
    }
}
/* This code contributed by PrinciRaj1992 */

chevron_right



Output:

Minimum of 3 numbers is 68

Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :


4


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.