Write a program to find the smallest of three integers, without using any of the comparison operators.
Let 3 input numbers be x, y and z.
Method 1 (Repeated Subtraction)
Take a counter variable c and initialize it with 0. In a loop, repeatedly subtract x, y and z by 1 and increment c. The number which becomes 0 first is the smallest. After the loop terminates, c will hold the minimum of 3.
C++
#include <bits/stdc++.h>
using namespace std;
int smallest( int x, int y, int z)
{
int c = 0;
while (x && y && z) {
x--;
y--;
z--;
c++;
}
return c;
}
int main()
{
int x = 12, y = 15, z = 5;
cout << "Minimum of 3 numbers is "
<< smallest(x, y, z);
return 0;
}
|
C
#include <stdio.h>
int smallest( int x, int y, int z)
{
int c = 0;
while (x && y && z) {
x--;
y--;
z--;
c++;
}
return c;
}
int main()
{
int x = 12, y = 15, z = 5;
printf ( "Minimum of 3 numbers is %d" , smallest(x, y, z));
return 0;
}
|
Java
class GFG {
static int smallest( int x, int y, int z)
{
int c = 0 ;
while (x != 0 && y != 0 && z != 0 ) {
x--;
y--;
z--;
c++;
}
return c;
}
public static void main(String[] args)
{
int x = 12 , y = 15 , z = 5 ;
System.out.printf( "Minimum of 3"
+ " numbers is %d" ,
smallest(x, y, z));
}
}
|
Python3
def smallest(x, y, z):
c = 0
while ( x and y and z ):
x = x - 1
y = y - 1
z = z - 1
c = c + 1
return c
x = 12
y = 15
z = 5
print ( "Minimum of 3 numbers is" ,
smallest(x, y, z))
|
C#
using System;
class GFG {
static int smallest( int x, int y, int z)
{
int c = 0;
while (x != 0 && y != 0 && z != 0) {
x--;
y--;
z--;
c++;
}
return c;
}
public static void Main()
{
int x = 12, y = 15, z = 5;
Console.Write( "Minimum of 3"
+ " numbers is " + smallest(x, y, z));
}
}
|
PHP
<?php
function smallest( $x , $y , $z )
{
$c = 0;
while ( $x && $y && $z )
{
$x --; $y --; $z --; $c ++;
}
return $c ;
}
$x = 12;
$y = 15;
$z = 5;
echo "Minimum of 3 numbers is " .
smallest( $x , $y , $z );
?>
|
Javascript
<script>
function smallest(x, y, z)
{
let c = 0;
while (x && y && z) {
x--;
y--;
z--;
c++;
}
return c;
}
let x = 12, y = 15, z = 5;
document.write( "Minimum of 3 numbers is "
+ smallest(x, y, z));
</script>
|
Output:
Minimum of 3 numbers is 5
Time Complexity: O(min(x, y, z))
Auxiliary Space: O(1)
This method doesn’t work for negative numbers. Method 2 works for negative numbers also.
Method 2 (Use Bit Operations)
Use method 2 of this post to find minimum of two numbers (We can’t use Method 1 as Method 1 uses comparison operator). Once we have functionality to find minimum of 2 numbers, we can use this to find minimum of 3 numbers.
C++
#include <bits/stdc++.h>
using namespace std;
#define CHAR_BIT 8
int min( int x, int y)
{
return y + ((x - y) & ((x - y) >> ( sizeof ( int ) * CHAR_BIT - 1)));
}
int smallest( int x, int y, int z)
{
return min(x, min(y, z));
}
int main()
{
int x = 12, y = 15, z = 5;
cout << "Minimum of 3 numbers is " << smallest(x, y, z);
return 0;
}
|
C
#include <stdio.h>
#define CHAR_BIT 8
int min( int x, int y)
{
return y + ((x - y) & ((x - y) >> ( sizeof ( int ) * CHAR_BIT - 1)));
}
int smallest( int x, int y, int z)
{
return min(x, min(y, z));
}
int main()
{
int x = 12, y = 15, z = 5;
printf ( "Minimum of 3 numbers is %d" , smallest(x, y, z));
return 0;
}
|
Java
class GFG
{
static int CHAR_BIT = 8 ;
static int min( int x, int y)
{
return y + ((x - y) & ((x - y) >>
((Integer.SIZE/ 8 ) * CHAR_BIT - 1 )));
}
static int smallest( int x, int y, int z)
{
return Math.min(x, Math.min(y, z));
}
public static void main (String[] args)
{
int x = 12 , y = 15 , z = 5 ;
System.out.println( "Minimum of 3 numbers is " +
smallest(x, y, z));
}
}
|
Python3
CHAR_BIT = 8
def min (x, y):
return y + ((x - y) & \
((x - y) >> ( 32 * CHAR_BIT - 1 )))
def smallest(x, y, z):
return min (x, min (y, z))
x = 12
y = 15
z = 5
print ( "Minimum of 3 numbers is " ,
smallest(x, y, z))
|
C#
using System;
class GFG
{
static int CHAR_BIT=8;
static int min( int x, int y)
{
return y + ((x - y) & ((x - y) >> ( sizeof ( int ) * CHAR_BIT - 1)));
}
static int smallest( int x, int y, int z)
{
return Math.Min(x, Math.Min(y, z));
}
static void Main()
{
int x = 12, y = 15, z = 5;
Console.WriteLine( "Minimum of 3 numbers is " +smallest(x, y, z));
}
}
|
Javascript
<script>
let CHAR_BIT = 8;
function min(x,y)
{
return y + ((x - y) & ((x - y) >> (32 * CHAR_BIT - 1)))
}
function smallest(x,y,z)
{
return Math.min(x, Math.min(y, z));
}
let x = 12, y = 15, z = 5;
document.write( "Minimum of 3 numbers is " +
smallest(x, y, z));
</script>
|
Output:
Minimum of 3 numbers is 5
Time Complexity: O(1)
Auxiliary Space: O(1)
Method 3 (Use Division operator)
We can also use division operator to find minimum of two numbers. If value of (a/b) is zero, then b is greater than a, else a is greater. Thanks to gopinath and Vignesh for suggesting this method.
C++
#include <bits/stdc++.h>
using namespace std;
int smallest( int x, int y, int z)
{
if (!(y / x))
return (!(y / z)) ? y : z;
return (!(x / z)) ? x : z;
}
int main()
{
int x = 78, y = 88, z = 68;
cout << "Minimum of 3 numbers is " << smallest(x, y, z);
return 0;
}
|
C
#include <stdio.h>
int smallest( int x, int y, int z)
{
if (!(y / x))
return (!(y / z)) ? y : z;
return (!(x / z)) ? x : z;
}
int main()
{
int x = 78, y = 88, z = 68;
printf ( "Minimum of 3 numbers is %d" , smallest(x, y, z));
return 0;
}
|
Java
class GfG {
static int smallest( int x, int y, int z)
{
if ((y / x) != 1 )
return ((y / z) != 1 ) ? y : z;
return ((x / z) != 1 ) ? x : z;
}
public static void main(String[] args)
{
int x = 78 , y = 88 , z = 68 ;
System.out.printf( "Minimum of 3 numbers"
+ " is %d" ,
smallest(x, y, z));
}
}
|
python3
def smallest(x, y, z):
if ( not (y / x)):
return y if ( not (y / z)) else z
return x if ( not (x / z)) else z
if __name__ = = "__main__" :
x = 78
y = 88
z = 68
print ( "Minimum of 3 numbers is" ,
smallest(x, y, z))
|
C#
using System;
public class GfG {
static int smallest( int x, int y, int z)
{
if ((y / x) != 1)
return ((y / z) != 1) ? y : z;
return ((x / z) != 1) ? x : z;
}
public static void Main()
{
int x = 78, y = 88, z = 68;
Console.Write( "Minimum of 3 numbers"
+ " is {0}" ,
smallest(x, y, z));
}
}
|
Javascript
<script>
function smallest(x, y, z)
{
if (!(y / x))
return (!(y / z)) ? y : z;
return (!(x / z)) ? x : z;
}
let x = 78, y = 88, z = 68;
document.write( "Minimum of 3 numbers is " + smallest(x, y, z));
</script>
|
Output:
Minimum of 3 numbers is 68
Time Complexity: O(1)
Auxiliary Space: O(1)
Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
12 Jun, 2022
Like Article
Save Article