Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Smallest of three integers without comparison operators

  • Difficulty Level : Medium
  • Last Updated : 22 Mar, 2021

Write a program to find the smallest of three integers, without using any of the comparison operators. 
Let 3 input numbers be x, y and z.
Method 1 (Repeated Subtraction) 
Take a counter variable c and initialize it with 0. In a loop, repeatedly subtract x, y and z by 1 and increment c. The number which becomes 0 first is the smallest. After the loop terminates, c will hold the minimum of 3. 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

C++




// C++ program to find Smallest
// of three integers without
// comparison operators
#include <bits/stdc++.h>
using namespace std;
int smallest(int x, int y, int z)
{
    int c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
 
// Driver Code
int main()
{
    int x = 12, y = 15, z = 5;
    cout << "Minimum of 3 numbers is "
         << smallest(x, y, z);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai

C




// C program to find Smallest
// of three integers without
// comparison operators
#include <stdio.h>
 
int smallest(int x, int y, int z)
{
    int c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
 
int main()
{
    int x = 12, y = 15, z = 5;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}

Java




// Java program to find Smallest
// of three integers without
// comparison operators
class GFG {
 
    static int smallest(int x, int y, int z)
    {
        int c = 0;
 
        while (x != 0 && y != 0 && z != 0) {
            x--;
            y--;
            z--;
            c++;
        }
 
        return c;
    }
 
    public static void main(String[] args)
    {
        int x = 12, y = 15, z = 5;
 
        System.out.printf("Minimum of 3"
                              + " numbers is %d",
                          smallest(x, y, z));
    }
}
 
// This code is contributed by  Smitha Dinesh Semwal.

Python3




# Python3 program to find Smallest
# of three integers without
# comparison operators
 
def smallest(x, y, z):
    c = 0
     
    while ( x and y and z ):
        x = x-1
        y = y-1
        z = z-1
        c = c + 1
 
    return c
 
# Driver Code
x = 12
y = 15
z = 5
print("Minimum of 3 numbers is",
       smallest(x, y, z))
 
# This code is contributed by Anshika Goyal

C#




// C# program to find Smallest of three
// integers without comparison operators
using System;
 
class GFG {
    static int smallest(int x, int y, int z)
    {
        int c = 0;
 
        while (x != 0 && y != 0 && z != 0) {
            x--;
            y--;
            z--;
            c++;
        }
 
        return c;
    }
 
    // Driver Code
    public static void Main()
    {
        int x = 12, y = 15, z = 5;
 
        Console.Write("Minimum of 3"
                      + " numbers is " + smallest(x, y, z));
    }
}
 
// This code is contributed by Sam007

PHP




<?php
// php program to find Smallest
// of three integers without
// comparison operators
function smallest($x, $y, $z)
{
    $c = 0;
    while ( $x && $y && $z )
    {
        $x--; $y--; $z--; $c++;
    }
     
    return $c;
}
 
// Driver code
$x = 12;
$y = 15;
$z = 5;
echo "Minimum of 3 numbers is ".
             smallest($x, $y, $z);
 
// This code is contributed by Sam007
?>

Javascript




<script>
 
// JavaScript program to find Smallest
// of three integers without
// comparison operators
 
function smallest(x, y, z)
{
    let c = 0;
    while (x && y && z) {
        x--;
        y--;
        z--;
        c++;
    }
    return c;
}
 
// Driver Code
 
let x = 12, y = 15, z = 5;
document.write("Minimum of 3 numbers is "
    + smallest(x, y, z));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>

Output: 

Minimum of 3 numbers is 5

This method doesn’t work for negative numbers. Method 2 works for negative numbers also.
Method 2 (Use Bit Operations) 
Use method 2 of this post to find minimum of two numbers (We can’t use Method 1 as Method 1 uses comparison operator). Once we have functionality to find minimum of 2 numbers, we can use this to find minimum of 3 numbers. 
 



C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
#define CHAR_BIT 8
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Function to find minimum of 3 numbers x, y and z*/
int smallest(int x, int y, int z)
{
    return min(x, min(y, z));
}
 
// Driver code
int main()
{
    int x = 12, y = 15, z = 5;
    cout << "Minimum of 3 numbers is "  << smallest(x, y, z);
    return 0;
}
 
// This code is contributed by Code_Mech.

C




// C implementation of above approach
#include <stdio.h>
#define CHAR_BIT 8
 
/*Function to find minimum of x and y*/
int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Function to find minimum of 3 numbers x, y and z*/
int smallest(int x, int y, int z)
{
    return min(x, min(y, z));
}
 
int main()
{
    int x = 12, y = 15, z = 5;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}

Java




// Java implementation of above approach
class GFG
{
     
static int CHAR_BIT = 8;
 
// Function to find minimum of x and y
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >>
               ((Integer.SIZE/8) * CHAR_BIT - 1)));
}
 
// Function to find minimum of 3 numbers x, y and z
static int smallest(int x, int y, int z)
{
    return Math.min(x, Math.min(y, z));
}
 
// Driver code
public static void main (String[] args)
{
    int x = 12, y = 15, z = 5;
    System.out.println("Minimum of 3 numbers is " +
                                smallest(x, y, z));
}
}
 
// This code is contributed by mits

Python3




# Python3 implementation of above approach
CHAR_BIT = 8
 
# Function to find minimum of x and y
def min(x, y):
    return y + ((x - y) & \
               ((x - y) >> (32 * CHAR_BIT - 1)))
 
# Function to find minimum
# of 3 numbers x, y and z
def smallest(x, y, z):
    return min(x, min(y, z))
 
# Driver code
x = 12
y = 15
z = 5
print("Minimum of 3 numbers is ",
               smallest(x, y, z))
 
# This code is contributed
# by Mohit Kumar

C#




// C# implementation of above approach
using System;
 
class GFG
{
     
static int CHAR_BIT=8;
 
/*Function to find minimum of x and y*/
static int min(int x, int y)
{
    return y + ((x - y) & ((x - y) >> (sizeof(int) * CHAR_BIT - 1)));
}
 
/* Function to find minimum of 3 numbers x, y and z*/
static int smallest(int x, int y, int z)
{
    return Math.Min(x, Math.Min(y, z));
}
 
// Driver code
static void Main()
{
    int x = 12, y = 15, z = 5;
    Console.WriteLine("Minimum of 3 numbers is "+smallest(x, y, z));
}
}
 
// This code is contributed by mits

Javascript




<script>
     
    let CHAR_BIT = 8;
    // Function to find minimum of x and y
    function min(x,y)
    {
        return y + ((x - y) & ((x - y) >> (32 * CHAR_BIT - 1)))
    }
    // Function to find minimum of 3 numbers x, y and z
    function smallest(x,y,z)
    {
         return Math.min(x, Math.min(y, z));
    }
     
    // Driver code
    let  x = 12, y = 15, z = 5;
     
    document.write("Minimum of 3 numbers is " +
                                smallest(x, y, z));
     
    // This code is contributed by avanitrachhadiya2155
     
</script>

Output: 

Minimum of 3 numbers is 5

Method 3 (Use Division operator) 
We can also use division operator to find minimum of two numbers. If value of (a/b) is zero, then b is greater than a, else a is greater. Thanks to gopinath and Vignesh for suggesting this method.
 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Using division operator to find
// minimum of three numbers
int smallest(int x, int y, int z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
 
int main()
{
    int x = 78, y = 88, z = 68;
    cout << "Minimum of 3 numbers is " << smallest(x, y, z);
    return 0;
}
// this code is contributed by shivanisinghss2110

C




#include <stdio.h>
 
// Using division operator to find
// minimum of three numbers
int smallest(int x, int y, int z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
 
int main()
{
    int x = 78, y = 88, z = 68;
    printf("Minimum of 3 numbers is %d", smallest(x, y, z));
    return 0;
}

Java




// Java program of above approach
class GfG {
 
    // Using division operator to
    // find minimum of three numbers
    static int smallest(int x, int y, int z)
    {
        if ((y / x) != 1) // Same as "if (y < x)"
            return ((y / z) != 1) ? y : z;
        return ((x / z) != 1) ? x : z;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int x = 78, y = 88, z = 68;
        System.out.printf("Minimum of 3 numbers"
                              + " is %d",
                          smallest(x, y, z));
    }
}
 
// This code has been contributed by 29AjayKumar

python3




# Using division operator to find
# minimum of three numbers
def smallest(x, y, z):
 
    if (not (y / x)): # Same as "if (y < x)"
        return y if (not (y / z)) else z
    return x if (not (x / z)) else z
 
# Driver Code
if __name__== "__main__":
 
    x = 78
    y = 88
    z = 68
    print("Minimum of 3 numbers is",
                  smallest(x, y, z))
 
# This code is contributed
# by ChitraNayal

C#




// C# program of above approach
using System;
public class GfG {
 
    // Using division operator to
    // find minimum of three numbers
    static int smallest(int x, int y, int z)
    {
        if ((y / x) != 1) // Same as "if (y < x)"
            return ((y / z) != 1) ? y : z;
        return ((x / z) != 1) ? x : z;
    }
 
    // Driver code
    public static void Main()
    {
        int x = 78, y = 88, z = 68;
        Console.Write("Minimum of 3 numbers"
                          + " is {0}",
                      smallest(x, y, z));
    }
}
/* This code contributed by PrinciRaj1992 */

Javascript




<script>
 
// Javascript implementation of above approach
 
// Using division operator to find
// minimum of three numbers
function smallest(x, y, z)
{
    if (!(y / x)) // Same as "if (y < x)"
        return (!(y / z)) ? y : z;
    return (!(x / z)) ? x : z;
}
 
 
    let x = 78, y = 88, z = 68;
    document.write("Minimum of 3 numbers is " + smallest(x, y, z));
 
// This is code is contributed by Mayank Tyagi
 
</script>

Output: 

Minimum of 3 numbers is 68

Please write comments if you find the above codes/algorithms incorrect, or find other ways to solve the same problem.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :