Parity of a number refers to whether it contains an odd or even number of 1-bits. The number has “odd parity”, if it contains odd number of 1-bits and is “even parity” if it contains even number of 1-bits.
1 --> parity of the set is odd
0 --> parity of the set is even
Examples:
Input : 254
Output : Odd Parity
Explanation : Binary of 254 is 11111110.
There are 7 ones. Thus, parity is odd.
Input : 1742346774
Output : Even
Method 1 : (Naive approach) We have already discussed this method here. Method 2 : (Efficient) Pre-requisites : Table look up, X-OR magic If we break a number S into two parts S1 and S2 such S = S1S2. If we know parity of S1 and S2, we can compute parity of S using below facts :
- If S1 and S2 have the same parity, i.e. they both have an even number of bits or an odd number of bits, their union S will have an even number of bits.
- Therefore parity of S is XOR of parities of S1 and S2
The idea is to create a look up table to store parities of all 8 bit numbers. Then compute parity of whole number by dividing it into 8 bit numbers and using above facts. Steps:
1. Create a look-up table for 8-bit numbers ( 0 to 255 )
Parity of 0 is 0.
Parity of 1 is 1.
.
.
.
Parity of 255 is 0.
2. Break the number into 8-bit chunks
while performing XOR operations.
3. Check for the result in the table for
the 8-bit number.
Since a 32 bit or 64 bit number contains constant number of bytes, the above steps take O(1) time. Example :
1. Take 32-bit number : 1742346774
2. Calculate Binary of the number :
01100111110110100001101000010110
3. Split the 32-bit binary representation into
16-bit chunks :
0110011111011010 | 0001101000010110
4. Compute X-OR :
0110011111011010
^ 0001101000010110
___________________
= 0111110111001100
5. Split the 16-bit binary representation
into 8-bit chunks : 01111101 | 11001100
6. Again, Compute X-OR :
01111101
^ 11001100
___________________
= 10110001
10110001 is 177 in decimal. Check
for its parity in look-up table :
Even number of 1 = Even parity.
Thus, Parity of 1742346774 is even.
Below is the implementation that works for both 32 bit and 64 bit numbers.
C++
#include <bits/stdc++.h>
#define P2(n) n, n ^ 1, n ^ 1, n
#define P4(n) P2(n), P2(n ^ 1), P2(n ^ 1), P2(n)
#define P6(n) P4(n), P4(n ^ 1), P4(n ^ 1), P4(n)
#define LOOK_UP P6(0), P6(1), P6(1), P6(0)
unsigned int table[256] = { LOOK_UP };
int Parity( int num)
{
int max = 16;
while (max >= 8) {
num = num ^ (num >> max);
max = max / 2;
}
return table[num & 0xff];
}
int main()
{
unsigned int num = 1742346774;
bool result = Parity(num);
result ? std::cout << "Odd Parity" :
std::cout << "Even Parity" ;
return 0;
}
|
Java
import java.util.ArrayList;
class GFG {
static ArrayList<Integer> table = new ArrayList<Integer>();
static void P2( int n)
{
table.add(n);
table.add(n ^ 1 );
table.add(n ^ 1 );
table.add(n);
}
static void P4( int n)
{
P2(n);
P2(n ^ 1 );
P2(n ^ 1 );
P2(n);
}
static void P6( int n)
{
P4(n);
P4(n ^ 1 );
P4(n ^ 1 );
P4(n) ;
}
static void LOOK_UP()
{
P6( 0 );
P6( 1 );
P6( 1 );
P6( 0 );
}
static int Parity( int num)
{
int max = 16 ;
while (max >= 8 )
{
num = num ^ (num >> max);
max = (max / 2 );
}
return table.get(num & 0xff );
}
public static void main(String[] args) {
int num = 1742346774 ;
LOOK_UP();
int result = Parity(num);
if (result != 0 )
System.out.println( "Odd Parity" );
else
System.out.println( "Even Parity" );
}
}
|
Python3
def P2(n, table):
table.extend([n, n ^ 1 , n ^ 1 , n])
def P4(n, table):
return (P2(n, table), P2(n ^ 1 , table),
P2(n ^ 1 , table), P2(n, table))
def P6(n, table):
return (P4(n, table), P4(n ^ 1 , table),
P4(n ^ 1 , table), P4(n, table))
def LOOK_UP(table):
return (P6( 0 , table), P6( 1 , table),
P6( 1 , table), P6( 0 , table))
table = [ 0 ] * 256
LOOK_UP(table)
def Parity(num) :
max = 16
while ( max > = 8 ):
num = num ^ (num >> max )
max = max / / 2
return table[num & 0xff ]
if __name__ = = "__main__" :
num = 1742346774
result = Parity(num)
print ( "Odd Parity" ) if result else print ( "Even Parity" )
|
C#
using System;
using System.Collections.Generic;
class GFG {
static List< int > table = new List< int >();
static void P2( int n)
{
table.Add(n);
table.Add(n ^ 1);
table.Add(n ^ 1);
table.Add(n);
}
static void P4( int n)
{
P2(n);
P2(n ^ 1);
P2(n ^ 1);
P2(n);
}
static void P6( int n)
{
P4(n);
P4(n ^ 1);
P4(n ^ 1);
P4(n);
}
static void LOOK_UP()
{
P6(0);
P6(1);
P6(1);
P6(0);
}
static int Parity( int num)
{
int max = 16;
while (max >= 8) {
num = num ^ (num >> max);
max = (max / 2);
}
return table[num & 0xff];
}
public static void Main( string [] args)
{
int num = 1742346774;
LOOK_UP();
int result = Parity(num);
if (result != 0)
Console.WriteLine( "Odd Parity" );
else
Console.WriteLine( "Even Parity" );
}
}
|
PHP
<?php
function Parity( $num )
{
global $table ;
$max = 16;
while ( $max >= 8)
{
$num = $num ^ ( $num >> $max );
$max = (int) $max / 2;
}
return $table [ $num & 0xff];
}
$num = 1742346774;
$result = Parity( $num );
if ( $result == true)
echo "Odd Parity" ;
else
echo "Even Parity" ;
?>
|
Javascript
function P2(n, table)
{
table.push(n, n ^ 1, n ^ 1, n);
}
function P4(n, table)
{
return (P2(n, table), P2(n ^ 1, table),
P2(n ^ 1, table), P2(n, table));
}
function P6(n, table)
{
return (P4(n, table), P4(n ^ 1, table),
P4(n ^ 1, table), P4(n, table)) ;
}
function LOOK_UP(table)
{
return (P6(0, table), P6(1, table),
P6(1, table), P6(0, table));
}
var table = new Array(256).fill(0);
LOOK_UP(table);
function Parity(num)
{
var max = 16;
while (max >= 8)
{
num = num ^ (num >> max);
max = Math.floor(max / 2);
}
return table[num & 0xff] ;
}
var num = 1742346774;
var result = Parity(num);
console.log(result ? "Odd Parity" : "Even Parity" );
|
Output:
Even Parity
Time Complexity : O(1). Note that a 32 bit or 64 bit number has fixed number of bytes (4 in case of 32 bits and 8 in case of 64 bits).
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
28 Aug, 2022
Like Article
Save Article