Skip to content
Related Articles

Related Articles

Count set bits in an integer
  • Difficulty Level : Medium
  • Last Updated : 10 Feb, 2021
 

Write an efficient program to count number of 1s in the binary representation of an integer.
Examples : 

Input : n = 6
Output : 2
Binary representation of 6 is 110 and has 2 set bits

Input : n = 13
Output : 3
Binary representation of 13 is 1101 and has 3 set bits

 

setbit

 

 

1. Simple Method Loop through all bits in an integer, check if a bit is set and if it is then increment the set bit count. See below program. 



C++




// C++ program to Count set
// bits in an integer
#include <bits/stdc++.h>
using namespace std;
 
/* Function to get no of set bits in binary
representation of positive integer n */
unsigned int countSetBits(unsigned int n)
{
    unsigned int count = 0;
    while (n) {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
/* Program to test function countSetBits */
int main()
{
    int i = 9;
    cout << countSetBits(i);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai


C




// C program to Count set
// bits in an integer
#include <stdio.h>
 
/* Function to get no of set bits in binary
   representation of positive integer n */
unsigned int countSetBits(unsigned int n)
{
    unsigned int count = 0;
    while (n) {
        count += n & 1;
        n >>= 1;
    }
    return count;
}
 
/* Program to test function countSetBits */
int main()
{
    int i = 9;
    printf("%d", countSetBits(i));
    return 0;
}


Java




// Java program to Count set
// bits in an integer
import java.io.*;
 
class countSetBits {
    /* Function to get no of set
    bits in binary representation
    of positive integer n */
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0) {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
 
    // driver program
    public static void main(String args[])
    {
        int i = 9;
        System.out.println(countSetBits(i));
    }
}
 
// This code is contributed by Anshika Goyal.


Python3




# Python3 program to Count set
# bits in an integer
 
# Function to get no of set bits in binary
# representation of positive integer n */
def  countSetBits(n):
    count = 0
    while (n):
        count += n & 1
        n >>= 1
    return count
 
 
# Program to test function countSetBits */
i = 9
print(countSetBits(i))
 
# This code is contributed by
# Smitha Dinesh Semwal


C#




// C# program to Count set
// bits in an integer
using System;
 
class GFG {
    // Function to get no of set
    // bits in binary representation
    // of positive integer n
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0) {
            count += n & 1;
            n >>= 1;
        }
        return count;
    }
 
    // Driver Code
    public static void Main()
    {
        int i = 9;
        Console.Write(countSetBits(i));
    }
}
 
// This code is contributed by Sam007


PHP




<?php
// PHP program to Count set
// bits in an integer
 
// Function to get no of set 
// bits in binary representation
// of positive integer n
function countSetBits($n)
{
    $count = 0;
    while ($n)
    {
        $count += $n & 1;
        $n >>= 1;
    }
    return $count;
}
 
// Driver Code
$i = 9;
echo countSetBits($i);
 
// This code is contributed by ajit
?>


Output : 

2

Time Complexity: (-)(logn) (Theta of logn)
Recursive Approach :  

C++




// cpp implementation of recursive
// approach to find the number
// of set bits in binary representation
// of positive integer n
#include <bits/stdc++.h>
using namespace std;
 
// recursive function to count set bits
int countSetBits(int n)
{
    // base case
    if (n == 0)
        return 0;
 
    else
 
        // if last bit set add 1 else add 0
        return (n & 1) + countSetBits(n >> 1);
}
 
// driver code
int main()
{
    // get value from user
    int n = 9;
 
    // function calling
    cout << countSetBits(n);
 
    return 0;
}
 
// This code is contributed by Raj.


Java




// Java implementation of recursive
// approach to find the number
// of set bits in binary representation
// of positive integer n
import java.io.*;
 
class GFG {
 
    // recursive function to count set bits
    public static int countSetBits(int n)
    {
 
        // base case
        if (n == 0)
            return 0;
 
        else
 
            // if last bit set add 1 else add 0
            return (n & 1) + countSetBits(n >> 1);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // get value from user
        int n = 9;
 
        // function calling
        System.out.println(countSetBits(n));
    }
}
 
// This code is contributes by sunnysingh


Python3




# Python3 implementation of recursive
# approach to find the number of set
# bits in binary representation of
# positive integer n
 
def countSetBits( n):
     
    # base case
    if (n == 0):
        return 0
 
    else:
 
        # if last bit set add 1 else
        # add 0
        return (n & 1) + countSetBits(n >> 1)
         
# Get value from user
n = 9
 
# Function calling
print( countSetBits(n))    
         
# This code is contributed by sunnysingh


C#




// C# implementation of recursive
// approach to find the number of
// set bits in binary representation
// of positive integer n
using System;
 
class GFG {
 
    // recursive function
    // to count set bits
    public static int countSetBits(int n)
    {
 
        // base case
        if (n == 0)
            return 0;
 
        else
 
            // if last bit set
            // add 1 else add 0
            return (n & 1) + countSetBits(n >> 1);
    }
 
    // Driver code
    static public void Main()
    {
 
        // get value
        // from user
        int n = 9;
 
        // function calling
        Console.WriteLine(countSetBits(n));
    }
}
 
// This code is contributed by aj_36


PHP




<?php
// PHP implementation of recursive
// approach to find the number of
// set bits in binary representation
// of positive integer n
 
// recursive function
// to count set bits
function countSetBits($n)
{
    // base case
    if ($n == 0)
        return 0;
 
    else
 
        // if last bit set
        // add 1 else add 0
        return ($n & 1) +
                countSetBits($n >> 1);
}
 
// Driver code
 
// get value from user
$n = 9;
 
// function calling
echo countSetBits($n);
 
// This code is contributed by m_kit.
?>


Output : 

2

2. Brian Kernighan’s Algorithm: 
Subtracting 1 from a decimal number flips all the bits after the rightmost set bit(which is 1) including the rightmost set bit. 
for example : 
10 in binary is 00001010 
9 in binary is 00001001 
8 in binary is 00001000 
7 in binary is 00000111 
So if we subtract a number by 1 and do bitwise & with itself (n & (n-1)), we unset the rightmost set bit. If we do n & (n-1) in a loop and count the no of times loop executes we get the set bit count. 
The beauty of this solution is the number of times it loops is equal to the number of set bits in a given integer. 

 
   1  Initialize count: = 0
   2  If integer n is not zero
      (a) Do bitwise & with (n-1) and assign the value back to n
          n: = n&(n-1)
      (b) Increment count by 1
      (c) go to step 2
   3  Else return count

Implementation of Brian Kernighan’s Algorithm:  

C++




// C++ program to Count set
// bits in an integer
#include <iostream>
using namespace std;
class gfg {
    /* Function to get no of set bits in binary
representation of passed binary no. */
public:
    unsigned int countSetBits(int n)
    {
        unsigned int count = 0;
        while (n) {
            n &= (n - 1);
            count++;
        }
        return count;
    }
};
/* Program to test function countSetBits */
int main()
{
    gfg g;
    int i = 9;
    cout << g.countSetBits(i);
    return 0;
}


C




// C program to Count set
// bits in an integer
#include <stdio.h>
 
/* Function to get no of set bits in binary
   representation of passed binary no. */
unsigned int countSetBits(int n)
{
    unsigned int count = 0;
    while (n) {
        n &= (n - 1);
        count++;
    }
    return count;
}
 
/* Program to test function countSetBits */
int main()
{
    int i = 9;
    printf("%d", countSetBits(i));
    getchar();
    return 0;
}


Java




// Java program to Count set
// bits in an integer
import java.io.*;
 
class countSetBits {
    /* Function to get no of set
    bits in binary representation
    of passed binary no. */
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0) {
            n &= (n - 1);
            count++;
        }
        return count;
    }
 
    // driver program
    public static void main(String args[])
    {
        int i = 9;
        System.out.println(countSetBits(i));
    }
}
 
// This code is contributed by Anshika Goyal.


Python3




# Function to get no of set bits in binary
# representation of passed binary no. */
def countSetBits(n):
 
    count = 0
    while (n):
        n &= (n-1)
        count+= 1
     
    return count
 
 
# Program to test function countSetBits
i = 9
print(countSetBits(i))
  
# This code is contributed by
# Smitha Dinesh Semwal


C#




// C# program to Count set
// bits in an integer
using System;
 
class GFG {
 
    /* Function to get no of set
    bits in binary representation
    of passed binary no. */
    static int countSetBits(int n)
    {
        int count = 0;
        while (n > 0) {
            n &= (n - 1);
            count++;
        }
        return count;
    }
 
    // Driver Code
    static public void Main()
    {
        int i = 9;
        Console.WriteLine(countSetBits(i));
    }
}
 
// This code is contributed by ajit


PHP




<?php
 
/* Function to get no of
set bits in binary
representation of passed
binary no. */
function countSetBits($n)
{
    $count = 0;
    while ($n)
    {
    $n &= ($n - 1) ;
    $count++;
    }
    return $count;
}
 
// Driver Code
$i = 9;
echo countSetBits($i);
 
// This code is contributed
// by akt_mit
?>


Output : 

2

Example for Brian Kernighan’s Algorithm:  

   n =  9 (1001)
   count = 0

   Since 9 > 0, subtract by 1 and do bitwise & with (9-1)
   n = 9&8  (1001 & 1000)
   n = 8
   count  = 1

   Since 8 > 0, subtract by 1 and do bitwise & with (8-1)
   n = 8&7  (1000 & 0111)
   n = 0
   count = 2

   Since n = 0, return count which is 2 now.

Time Complexity: O(logn)
Recursive Approach :  



C++




// CPP implementation for recursive
// approach to find the number of set
// bits using Brian Kernighan’s Algorithm
#include <bits/stdc++.h>
using namespace std;
 
// recursive function to count set bits
int countSetBits(int n)
{
    // base case
    if (n == 0)
        return 0;
    else
        return 1 + countSetBits(n & (n - 1));
}
 
// driver code
int main()
{
    // get value from user
    int n = 9;
 
    // function calling
    cout << countSetBits(n);
 
    return 0;
}
 
// This code is contributed by Raj.


Java




// Java implementation for recursive
// approach to find the number of set
// bits using Brian Kernighan Algorithm
import java.io.*;
 
class GFG {
 
    // recursive function to count set bits
    public static int countSetBits(int n)
    {
 
        // base case
        if (n == 0)
            return 0;
        else
            return 1 + countSetBits(n & (n - 1));
    }
 
    // Driver function
    public static void main(String[] args)
    {
 
        // get value from user
        int n = 9;
 
        // function calling
        System.out.println(countSetBits(n));
    }
}
 
// This code is contributed by sunnysingh


Python3




# Python3 implementation for
# recursive approach to find
# the number of set bits using
# Brian Kernighan’s Algorithm
 
# recursive function to count
# set bits
def countSetBits(n):
 
    # base case
    if (n == 0):
        return 0
    else:
        return 1 + countSetBits(n & (n - 1))
             
             
# Get value from user
n = 9
     
# function calling
print(countSetBits(n))
 
# This code is contributed by sunnysingh


C#




// C# implementation for recursive
// approach to find the number of set
// bits using Brian Kernighan Algorithm
using System;
 
class GFG {
 
    // recursive function
    // to count set bits
    public static int countSetBits(int n)
    {
 
        // base case
        if (n == 0)
            return 0;
        else
            return 1 + countSetBits(n & (n - 1));
    }
 
    // Driver Code
    static public void Main()
    {
 
        // get value from user
        int n = 9;
 
        // function calling
        Console.WriteLine(countSetBits(n));
    }
}
 
// This code is contributed by aj_36


PHP




<?php
// PHP implementation for
// recursive approach to
// find the number of set
// bits using Brian
// Kernighan’s Algorithm
 
// recursive function to
// count set bits
function countSetBits($n)
{
    // base case
    if ($n == 0)
        return 0;
    else
        return 1 +
          countSetBits($n &
                      ($n - 1));
}
 
// Driver Code
 
// get value from user
$n = 9;
 
// function calling
echo countSetBits($n);
     
// This code is contributed by ajit.
?>


Output : 

2

3. Using Lookup table: We can count bits in O(1) time using lookup table. Please see http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetTable for details.
Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int BitsSetTable256[256];
 
// Function to initialise the lookup table
void initialize()
{
 
    // To initially generate the
    // table algorithmically
    BitsSetTable256[0] = 0;
    for (int i = 0; i < 256; i++)
    {
        BitsSetTable256[i] = (i & 1) +
        BitsSetTable256[i / 2];
    }
}
 
// Function to return the count
// of set bits in n
int countSetBits(int n)
{
    return (BitsSetTable256[n & 0xff] +
            BitsSetTable256[(n >> 8) & 0xff] +
            BitsSetTable256[(n >> 16) & 0xff] +
            BitsSetTable256[n >> 24]);
}
 
// Driver code
int main()
{
    // Initialise the lookup table
    initialize();
    int n = 9;
    cout << countSetBits(n);
}
 
// This code is contributed by Sanjit_Kumar


Java




// Java implementation of the approach
class GFG {
 
    // Lookup table
    static int[] BitsSetTable256 = new int[256];
 
    // Function to initialise the lookup table
    public static void initialize()
    {
 
        // To initially generate the
        // table algorithmically
        BitsSetTable256[0] = 0;
        for (int i = 0; i < 256; i++) {
            BitsSetTable256[i] = (i & 1) + BitsSetTable256[i / 2];
        }
    }
 
    // Function to return the count
    // of set bits in n
    public static int countSetBits(int n)
    {
        return (BitsSetTable256[n & 0xff]
                + BitsSetTable256[(n >> 8) & 0xff]
                + BitsSetTable256[(n >> 16) & 0xff]
                + BitsSetTable256[n >> 24]);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // Initialise the lookup table
        initialize();
        int n = 9;
        System.out.print(countSetBits(n));
    }
}


Python




# Python implementation of the approach
BitsSetTable256 = [0] * 256
 
# Function to initialise the lookup table
def initialize():
     
    # To initially generate the
    # table algorithmically
    BitsSetTable256[0] = 0
    for i in range(256):
        BitsSetTable256[i] = (i & 1) + BitsSetTable256[i // 2]
 
# Function to return the count
# of set bits in n
def countSetBits(n):
    return (BitsSetTable256[n & 0xff] +
            BitsSetTable256[(n >> 8) & 0xff] +
            BitsSetTable256[(n >> 16) & 0xff] +
            BitsSetTable256[n >> 24])
 
# Driver code
 
# Initialise the lookup table
initialize()
n = 9
print(countSetBits(n))
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Lookup table
    static int[] BitsSetTable256 = new int[256];
 
    // Function to initialise the lookup table
    public static void initialize()
    {
 
        // To initially generate the
        // table algorithmically
        BitsSetTable256[0] = 0;
        for (int i = 0; i < 256; i++)
        {
            BitsSetTable256[i] = (i & 1) + BitsSetTable256[i / 2];
        }
    }
 
    // Function to return the count
    // of set bits in n
    public static int countSetBits(int n)
    {
        return (BitsSetTable256[n & 0xff]
                + BitsSetTable256[(n >> 8) & 0xff]
                + BitsSetTable256[(n >> 16) & 0xff]
                + BitsSetTable256[n >> 24]);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
 
        // Initialise the lookup table
        initialize();
        int n = 9;
        Console.Write(countSetBits(n));
    }
}
 
// This code is contributed by 29AjayKumar


Output: 

2

 

We can find one use of counting set bits at Count number of bits to be flipped to convert A to B
Note: In GCC, we can directly count set bits using __builtin_popcount(). So we can avoid a separate function for counting set bits. 

C++




// C++ program to demonstrate __builtin_popcount()
#include <iostream>
using namespace std;
 
int main()
{
    cout << __builtin_popcount(4) << endl;
    cout << __builtin_popcount(15);
 
    return 0;
}


Java




// java program to demonstrate
// __builtin_popcount()
 
import java.io.*;
 
class GFG {
 
    // Driver code
    public static void main(String[] args)
    {
 
        System.out.println(Integer.bitCount(4));
        System.out.println(Integer.bitCount(15));
    }
}
 
// This code is contributed by Raj


Python3




# Python3 program to demonstrate __builtin_popcount()
 
print(bin(4).count('1'));
print(bin(15).count('1'));
 
# This code is Contributed by mits


C#




// C# program to demonstrate
// __builtin_popcount()
using System;
using System.Linq;
 
class GFG {
 
    // Driver code
    public static void Main()
    {
 
        Console.WriteLine(Convert.ToString(4, 2).Count(c = > c == '1'));
        Console.WriteLine(Convert.ToString(15, 2).Count(c = > c == '1'));
    }
}
 
// This code is contributed by mits


PHP




<?php
// PHP program to demonstrate
// __builtin_popcount()
 
// Driver code
$t = log10(4);
$x = log(15, 2);
$tt = ceil($t);
$xx = ceil($x);
 
echo ($tt), "\n";
echo ($xx), "\n";
 
// This code is contributed
// by jit_t
?>


Output : 

1
4

4. Mapping numbers with the bit. It simply maintains a Map(or array) of numbers to bits for a nibble. A Nibble contains 4bits. So we need an array up to 15. 
int num_to_bits[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; 
Now we just need to get nibbles of given long/int/word etc recursively. 

C++




// C++ program to count set bits by pre-storing
// count set bits in nibbles.
#include <bits/stdc++.h>
using namespace std;
 
int num_to_bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3,
                        1, 2, 2, 3, 2, 3, 3, 4 };
 
/* Recursively get nibble of a given number
and map them in the array */
unsigned int countSetBitsRec(unsigned int num)
{
    int nibble = 0;
    if (0 == num)
        return num_to_bits[0];
 
    // Find last nibble
    nibble = num & 0xf;
 
    // Use pre-stored values to find count
    // in last nibble plus recursively add
    // remaining nibbles.
    return num_to_bits[nibble] + countSetBitsRec(num >> 4);
}
 
// Driver code
int main()
{
    int num = 31;
    cout << countSetBitsRec(num);
    return 0;
}
 
// This code is contributed by rathbhupendra


C




// C program to count set bits by pre-storing
// count set bits in nibbles.
#include <stdio.h>
 
int num_to_bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3,
                        1, 2, 2, 3, 2, 3, 3, 4 };
 
/* Recursively get nibble of a given number
  and map them in the array  */
unsigned int countSetBitsRec(unsigned int num)
{
    int nibble = 0;
    if (0 == num)
        return num_to_bits[0];
 
    // Find last nibble
    nibble = num & 0xf;
 
    // Use pre-stored values to find count
    // in last nibble plus recursively add
    // remaining nibbles.
    return num_to_bits[nibble] + countSetBitsRec(num >> 4);
}
 
// Driver code
int main()
{
    int num = 31;
    printf("%d\n", countSetBitsRec(num));
}


Java




// Java program to count set bits by pre-storing
// count set bits in nibbles.
 
class GFG {
    static int[] num_to_bits = new int[] { 0, 1, 1, 2, 1, 2, 2,
                                           3, 1, 2, 2, 3, 2, 3, 3, 4 };
 
    /* Recursively get nibble of a given number
and map them in the array */
    static int countSetBitsRec(int num)
    {
        int nibble = 0;
        if (0 == num)
            return num_to_bits[0];
 
        // Find last nibble
        nibble = num & 0xf;
 
        // Use pre-stored values to find count
        // in last nibble plus recursively add
        // remaining nibbles.
        return num_to_bits[nibble] + countSetBitsRec(num >> 4);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int num = 31;
        System.out.println(countSetBitsRec(num));
    }
}
// this code is contributed by mits


Python3




# Python3 program to count set bits by pre-storing
# count set bits in nibbles.
 
num_to_bits =[0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4];
 
# Recursively get nibble of a given number
# and map them in the array
def countSetBitsRec(num):
    nibble = 0;
    if(0 == num):
        return num_to_bits[0];
     
    # Find last nibble
    nibble = num & 0xf;
     
    # Use pre-stored values to find count
    # in last nibble plus recursively add
    # remaining nibbles.
     
    return num_to_bits[nibble] + countSetBitsRec(num >> 4);
  
 
# Driver code
  
num = 31;
print(countSetBitsRec(num));
 
 
# this code is contributed by mits


C#




// C# program to count set bits by pre-storing
// count set bits in nibbles.
 
class GFG {
    static int[] num_to_bits = new int[16] { 0, 1, 1, 2, 1, 2, 2,
                                             3, 1, 2, 2, 3, 2, 3, 3, 4 };
 
    /* Recursively get nibble of a given number
and map them in the array */
    static int countSetBitsRec(int num)
    {
        int nibble = 0;
        if (0 == num)
            return num_to_bits[0];
 
        // Find last nibble
        nibble = num & 0xf;
 
        // Use pre-stored values to find count
        // in last nibble plus recursively add
        // remaining nibbles.
        return num_to_bits[nibble] + countSetBitsRec(num >> 4);
    }
 
    // Driver code
    static void Main()
    {
        int num = 31;
        System.Console.WriteLine(countSetBitsRec(num));
    }
}
// this code is contributed by mits


PHP




<?php
// PHP program to count set bits by
// pre-storing count set bits in nibbles.
 
$num_to_bits = array(0, 1, 1, 2, 1, 2, 2, 3,
                     1, 2, 2, 3, 2, 3, 3, 4);
 
/* Recursively get nibble of a given
number and map them in the array */
function countSetBitsRec( $num)
{
    global $num_to_bits;
    $nibble = 0;
    if (0 == $num)
        return $num_to_bits[0];
     
    // Find last nibble
    $nibble = $num & 0xf;
     
    // Use pre-stored values to find count
    // in last nibble plus recursively add
    // remaining nibbles.
    return $num_to_bits[$nibble] +
           countSetBitsRec($num >> 4);
}
 
// Driver code
$num = 31;
echo (countSetBitsRec($num));
 
// This code is contributed by mits
?>


Output : 

5

Time Complexity: O(1) 
Storage Complexity: O(1) Whether given number is short, int, long or long long we require array of 16 size only which is constant.

5. Checking each bit in a number: 

Each bit in the number is checked whether it is set or not. The number is bitwise AND with powers of 2, so if the result is not equal to zero, we come to know that the particular bit in the position is set.

C




#include <stdio.h>
 
// Check each bit in a number is set or not
// and return the total count of the set bits.
int countSetBits(int N)
{
    int count = 0;
   
    // (1 << i) = pow(2, i)
    for (int i = 0; i < sizeof(int) * 8; i++) {
        if (N & (1 << i))
            count++;
    }
    return count;
}
 
// Driver Code
int main()
{
    int N = 15;
 
    printf("%d", countSetBits(N));
    return 0;
}


C++




#include <iostream>
using namespace std;
 
// Check each bit in a number is set or not
// and return the total count of the set bits.
int countSetBits(int N)
{
    int count = 0;
    // (1 << i) = pow(2, i)
    for (int i = 0; i < sizeof(int) * 8; i++) {
        if (N & (1 << i))
            count++;
    }
    return count;
}
 
int main()
{
 
    int N = 15;
 
    cout << countSetBits(N) << endl;
    return 0;
}


Java




public class GFG
{
   
  // Check each bit in a number is set or not
  // and return the total count of the set bits.
  static int countSetBits(int N)
  {
    int count = 0;
    // (1 << i) = pow(2, i)
    for (int i = 0; i < 4 * 8; i++)
    {
      if ((N & (1 << i)) != 0)
        count++;
    }
    return count;
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int N = 15;
    System.out.println(countSetBits(N));
  }
}
 
// This code is contributed by divyeshrabadiya07.


Python3




# Check each bit in a number is set or not
# and return the total count of the set bits
def countSetBits(N):
  count = 0
 
  # (1 << i) = pow(2, i)
  for i in range(4*8):
    if(N & (1 << i)):
      count += 1
      return count
 
    # Driver code
    N = 15
    print(countSetBits(N))
 
    # This code is contributed by avanitrachhadiya2155


C#




using System;
class GFG
{
 
  // Check each bit in a number is set or not
  // and return the total count of the set bits.
  static int countSetBits(int N)
  {
    int count = 0;
 
    // (1 << i) = pow(2, i)
    for (int i = 0; i < 4 * 8; i++)
    {
      if ((N & (1 << i)) != 0)
        count++;
    }
    return count;
  }
 
  // Driver code
  static void Main()
  {
    int N = 15;
    Console.WriteLine(countSetBits(N));
  }
}
 
// This code is contributed by divyesh072019.


Output

4
 

Count set bits in an integer Using Lookup Table

References: 
http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetNaive

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :