Skip to content
Related Articles

Related Articles

Improve Article

Check whether the given number is Euclid Number or not

  • Last Updated : 08 Sep, 2021

Given a positive integer n, the task is to check if it is Euclid Number or not. Print ‘YES’ if the given number is Euclid Number otherwise print ‘NO’.
Euclid number : In Mathematics, Euclid numbers are integers of the form – E_{n} = p_{n}\# + 1
where p_{n}\#    is product of first n prime numbers.
The first few Euclid numbers are- 
 

3, 7, 31, 211, 2311, 30031, 510511, 9699691, ……….

Example: 
 

Input: N = 31
Output: YES
31 can be expressed in the form of 
pn# + 1 as p3# + 1
(First 3 prime numbers are 2, 3, 5 and their product is 30 )

Input: N = 43
Output: NO
43 cannot be expressed in the form of pn# + 1

 

Naive Approach: 
 



  1. Generate all prime number in the range using Sieve of Eratosthenes.
  2. Then starting from first prime (i.e 2 ) start multiplying next prime numberand keep checking if product + 1 = n .
  3. If the product + 1 = n then, n is Euclid number. Otherwise not.

Below is the implementation of above approach:
 

C++




// CPP program to check Euclid Number
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 10000
 
vector<int> arr;
 
// Function to generate prime numbers
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    bool prime[MAX];
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed, then it is a prime
 
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store all prime numbers
    // to vector 'arr'
    for (int p = 2; p < MAX; p++)
        if (prime[p])
            arr.push_back(p);
}
 
// Function to check the number for Euclid Number
bool isEuclid(long n)
{
 
    long long product = 1;
    int i = 0;
 
    while (product < n) {
 
        // Multiply next prime number
        // and check if product + 1 = n
        // holds or not
        product = product * arr[i];
 
        if (product + 1 == n)
            return true;
 
        i++;
    }
 
    return false;
}
 
// Driver code
int main()
{
 
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    long n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    return 0;
}

Java




// Java program to check Euclid Number
 
import java.util.*;
 
class GFG {
 
    static final int MAX = 10000;
    static Vector<Integer> arr = new Vector<Integer>();
 
    // Function to get the prime numbers
    static void SieveOfEratosthenes()
    {
        // Create a boolean array "prime[0..n]" and initialize
        // all entries it as true. A value in prime[i] will
        // finally be false if i is Not a prime, else true.
        boolean[] prime = new boolean[MAX];
 
        for (int i = 0; i < MAX; i++)
            prime[i] = true;
 
        for (int p = 2; p * p < MAX; p++) {
 
            // If prime[p] is not changed, then it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
 
        // store all prime numbers
        // to vector 'arr'
        for (int p = 2; p < MAX; p++)
            if (prime[p])
                arr.add(p);
    }
 
    // Function to check the number for Euclid Number
    static boolean isEuclid(long n)
    {
 
        long product = 1;
        int i = 0;
        while (product < n) {
 
            // Multiply next prime number
            // and check if product + 1 = n
            // holds or not
            product = product * arr.get(i);
 
            if (product + 1 == n)
                return true;
 
            i++;
        }
 
        return false;
    }
    public static void main(String[] args)
    {
 
        // Get the prime numbers
        SieveOfEratosthenes();
 
        // Get n
        long n = 31;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            System.out.println("YES");
        else
            System.out.println("NO");
 
        // Get n
        n = 42;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            System.out.println("YES");
        else
            System.out.println("NO");
    }
}

Python 3




# Python 3 program to check
# Euclid Number
MAX = 10000
 
arr = []
 
# Function to generate prime numbers
def SieveOfEratosthenes():
 
    # Create a boolean array "prime[0..n]"
    # and initialize all entries it as
    # true. A value in prime[i] will
    # finally be false if i is Not a
    # prime, else true.
    prime = [True] * MAX
 
    p = 2
    while p * p < MAX :
         
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
 
            # Update all multiples of p
            for i in range(p * 2, MAX, p):
                prime[i] = False
                 
        p += 1
 
    # store all prime numbers
    # to vector 'arr'
    for p in range(2, MAX):
        if (prime[p]):
            arr.append(p)
 
# Function to check the number
# for Euclid Number
def isEuclid(n):
 
    product = 1
    i = 0
 
    while (product < n) :
 
        # Multiply next prime number
        # and check if product + 1 = n
        # holds or not
        product = product * arr[i]
 
        if (product + 1 == n):
            return True
 
        i += 1
 
    return False
 
# Driver code
if __name__ == "__main__":
 
    # Get the prime numbers
    SieveOfEratosthenes()
 
    # Get n
    n = 31
 
    # Check if n is Euclid Number
    if (isEuclid(n)):
        print("YES")
    else:
        print("NO")
 
    # Get n
    n = 42
 
    # Check if n is Euclid Number
    if (isEuclid(n)):
        print("YES")
    else:
        print("NO")
 
# This code is contributed
# by ChitraNayal

C#




// C# program to check Euclid Number
using System;
using System.Collections.Generic;
 
class GFG
{
 
    static readonly int MAX = 10000;
    static List<int> arr = new List<int>();
 
    // Function to get the prime numbers
    static void SieveOfEratosthenes()
    {
        // Create a boolean array
        // "prime[0..n]" and initialize
        // all entries it as true.
        // A value in prime[i] will
        // finally be false if i is
        // Not a prime, else true.
        bool[] prime = new bool[MAX];
 
        for (int i = 0; i < MAX; i++)
            prime[i] = true;
 
        for (int p = 2; p * p < MAX; p++)
        {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true)
            {
 
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
 
        // store all prime numbers
        // to vector 'arr'
        for (int p = 2; p < MAX; p++)
            if (prime[p])
                arr.Add(p);
    }
 
    // Function to check the number for Euclid Number
    static bool isEuclid(long n)
    {
 
        long product = 1;
        int i = 0;
        while (product < n)
        {
 
            // Multiply next prime number
            // and check if product + 1 = n
            // holds or not
            product = product * arr[i];
 
            if (product + 1 == n)
                return true;
 
            i++;
        }
 
        return false;
    }
     
    // Driver code
    public static void Main(String[] args)
    {
 
        // Get the prime numbers
        SieveOfEratosthenes();
 
        // Get n
        long n = 31;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            Console.WriteLine("YES");
        else
            Console.WriteLine("NO");
 
        // Get n
        n = 42;
 
        // Check if n is Euclid Number
        if (isEuclid(n))
            Console.WriteLine("YES");
        else
            Console.WriteLine("NO");
    }
}
 
// This code has been contributed by 29AjayKumar

Javascript




<script>
 
// Javascript program to check Euclid Number
var MAX = 10000;
var arr = [];
 
// Function to generate prime numbers
function SieveOfEratosthenes()
{
 
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    var prime = Array(MAX).fill(true);;
 
    for (var p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed, then it is a prime
 
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (var i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store all prime numbers
    // to vector 'arr'
    for (var p = 2; p < MAX; p++)
        if (prime[p])
            arr.push(p);
}
 
// Function to check the number for Euclid Number
function isEuclid( n)
{
 
    var product = 1;
    var i = 0;
 
    while (product < n) {
 
        // Multiply next prime number
        // and check if product + 1 = n
        // holds or not
        product = product * arr[i];
 
        if (product + 1 == n)
            return true;
 
        i++;
    }
 
    return false;
}
 
// Driver code
 
// Get the prime numbers
SieveOfEratosthenes();
 
// Get n
var n = 31;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("YES<br>");
else
    document.write("NO<br>");
     
// Get n
n = 42;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("YES<br>");
else
    document.write("NO<br>");
 
// This code is contributed by itsok.
</script>
Output: 
YES
NO

 

Note: Above approach will take O(Pn#) for each query (for every N) i.e. no. of prime numbers to be multiplied to check if n is Euclid number or not.
Efficient Approach: 
 

  1. Generate all prime number in the range using Sieve of Eratosthenes.
  2. Compute prefix product of prime numbers up to a range to avoid re-calculating the product using hash table.
  3. If the product + 1 = n then, n is Euclid number. Otherwise not.

Below is the implementation of above approach:
 

C++




// CPP program to check Euclid Number
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 10000
 
unordered_set<long long int> s;
 
// Function to generate the Prime numbers
// and store their products
void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and initialize
    // all entries it as true. A value in prime[i] will
    // finally be false if i is Not a prime, else true.
    bool prime[MAX];
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < MAX; p++) {
        // If prime[p] is not changed, then it is a prime
 
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store prefix product of prime numbers
    // to unordered_set 's'
    long long int product = 1;
 
    for (int p = 2; p < MAX; p++) {
 
        if (prime[p]) {
 
            // update product by multiplying
            // next prime
            product = product * p;
 
            // insert 'produc+1' to set
            s.insert(product + 1);
        }
    }
}
 
// Function to check the number for Euclid Number
bool isEuclid(long n)
{
 
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.find(n) != s.end())
        return true;
    else
        return false;
}
 
// Driver code
int main()
{
 
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    long n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        cout << "YES\n";
    else
        cout << "NO\n";
 
    return 0;
}

Java




// Java program to check Euclid Number
import java.util.*;
 
class GFG
{
static int MAX = 10000;
 
static HashSet<Integer> s = new HashSet<Integer>();
 
// Function to generate the Prime numbers
// and store their products
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    boolean []prime = new boolean[MAX];
    Arrays.fill(prime, true);
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store prefix product of prime numbers
    // to unordered_set 's'
    int product = 1;
 
    for (int p = 2; p < MAX; p++)
    {
        if (prime[p])
        {
 
            // update product by multiplying
            // next prime
            product = product * p;
 
            // insert 'produc+1' to set
            s.add(product + 1);
        }
    }
}
 
// Function to check the number for Euclid Number
static boolean isEuclid(int n)
{
 
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.contains(n))
        return true;
    else
        return false;
}
 
// Driver code
public static void main(String[] args)
{
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    int n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        System.out.println("Yes");
    else
        System.out.println("No");
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python3 program to check Euclid Number
MAX = 10000
 
s = set()
 
# Function to generate the Prime numbers
# and store their products
def SieveOfEratosthenes():
 
    # Create a boolean array "prime[0..n]"
    # and initialize all entries it as true.
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True] * (MAX)
    prime[0], prime[1] = False, False
     
    for p in range(2, 100):
         
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p] == True:
 
            # Update all multiples of p
            for i in range(p * 2, MAX, p):
                prime[i] = False
 
    # store prefix product of prime numbers
    # to unordered_set 's'
    product = 1
 
    for p in range(2, MAX):
 
        if prime[p] == True:
 
            # update product by multiplying
            # next prime
            product = product * p
 
            # insert 'produc+1' to set
            s.add(product + 1)
 
# Function to check the number
# for Euclid Number
def isEuclid(n):
 
    # Check if number exist in
    # unordered set or not
    # If exist, return true
    if n in s:
        return True
    else:
        return False
 
# Driver code
if __name__ == "__main__":
 
    # Get the prime numbers
    SieveOfEratosthenes()
 
    # Get n
    n = 31
 
    # Check if n is Euclid Number
    if isEuclid(n) == True:
        print("YES")
    else:
        print("NO")
 
    # Get n
    n = 42
 
    # Check if n is Euclid Number
    if isEuclid(n) == True:
        print("YES")
    else:
        print("NO")
 
# This code is contributed by Rituraj Jain

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;
     
class GFG
{
static int MAX = 10000;
static HashSet<int> s = new HashSet<int>();
 
// Function to generate the Prime numbers
// and store their products
static void SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    Boolean []prime = new Boolean[MAX];
    for (int p = 0; p < MAX; p++)
        prime[p] = true;
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
 
    // store prefix product of prime numbers
    // to unordered_set 's'
    int product = 1;
 
    for (int p = 2; p < MAX; p++)
    {
        if (prime[p])
        {
 
            // update product by multiplying
            // next prime
            product = product * p;
 
            // insert 'produc+1' to set
            s.Add(product + 1);
        }
    }
}
 
// Function to check the number
// for Euclid Number
static Boolean isEuclid(int n)
{
 
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.Contains(n))
        return true;
    else
        return false;
}
 
// Driver code
public static void Main(String[] args)
{
    // Get the prime numbers
    SieveOfEratosthenes();
 
    // Get n
    int n = 31;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
 
    // Get n
    n = 42;
 
    // Check if n is Euclid Number
    if (isEuclid(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
 
// This code is contributed by Princi Singh

Javascript




<script>
// Javascript program to check Euclid Number
     
let MAX = 10000;
let s = new Set();
 
// Function to generate the Prime numbers
// and store their products
function SieveOfEratosthenes()
{
    // Create a boolean array "prime[0..n]" and
    // initialize all entries it as true.
    // A value in prime[i] will finally be false
    // if i is Not a prime, else true.
    let prime = new Array(MAX);
    for(let i=0;i<prime.length;i++)
    {
        prime[i]=true;
    }
     
    prime[0] = false;
    prime[1] = false;
    for (let p = 2; p * p < MAX; p++)
    {
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true)
        {
  
            // Update all multiples of p
            for (let i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
  
    // store prefix product of prime numbers
    // to unordered_set 's'
    let product = 1;
  
    for (let p = 2; p < MAX; p++)
    {
        if (prime[p])
        {
  
            // update product by multiplying
            // next prime
            product = product * p;
  
            // insert 'produc+1' to set
            s.add(product + 1);
        }
    }
}
 
// Function to check the number for Euclid Number
function isEuclid(n)
{
    // Check if number exist in
    // unordered set or not
    // If exist, return true
    if (s.has(n))
        return true;
    else
        return false;
}
 
// Driver code
 
// Get the prime numbers
SieveOfEratosthenes();   
 
// Get n
let n = 31;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("Yes<br>");
else
    document.write("No<br>");
 
// Get n
n = 42;
 
// Check if n is Euclid Number
if (isEuclid(n))
    document.write("Yes<br>");
else
    document.write("No<br>");
     
 
// This code is contributed by avanitrachhadiya2155
</script>
Output: 
YES
NO

 

Note: Above approach will take O(1) time to answer a query.
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :