Check if a M-th fibonacci number divides N-th fibonacci number

Given two numbers M and N, the task is to check if the M-th and N-th Fibonacci numbers perfectly divide each other or not.

Examples:

Input: M = 3, N = 6
Output: Yes
F(3) = 2, F(6) = 8 and F(6) % F(3) = 0

Input: M = 2, N = 9
Output: No



A naive approach will be to find the N-th and M-th Fibonacci numbers and check if they are perfectly divisible or not.

An efficient approach is to use the Fibonacci property to determine the result. If m perfectly divides n, then Fm also perfectly divides Fn, else it does not.

Exception: When N is 2, it is always possible as Fibo2 is 1, which divides every other Fibonacci number.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to check if 
// M-th fibonacci divides N-th fibonacci
#include <bits/stdc++.h>
using namespace std;
  
void check(int n, int m)
{
    // exceptional case for F(2)
    if (n == 2 || m == 2 || n % m == 0) {
        cout << "Yes" << endl;
    }
    // if none of the above cases,
    // hence not divisible
    else {
        cout << "No" << endl;
    }
}
  
// Driver Code
int main()
{
    int m = 3, n = 9;
    check(n, m);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check
// if M-th fibonacci 
// divides N-th fibonacci
import java.io.*;
  
class GFG 
{
static void check(int n, int m)
{
    // exceptional case for F(2)
    if (n == 2 || m == 2 ||
        n % m == 0
    {
        System.out.println( "Yes");
    }
      
    // if none of the above cases,
    // hence not divisible
    else 
    {
        System.out.println( "No");
    }
}
  
// Driver Code
public static void main (String[] args) 
{
    int m = 3, n = 9;
    check(n, m);
}
}
  
// This code is contributed
// by anuj_67.

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to 
# check if M-th fibonacci 
# divides N-th fibonacci
  
def check(n, m):
  
    # exceptional case for F(2)
    if (n == 2 or m == 2 or
        n % m == 0) :
        print( "Yes" )
      
    # if none of the above 
    # cases, hence not divisible
    else :
        print( "No" )
  
# Driver Code
m = 3
n = 9
check(n, m)
  
# This code is contributed
# by Smitha

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check
// if M-th fibonacci 
// divides N-th fibonacci
using System;
  
class GFG 
{
static void check(int n, int m)
{
    // exceptional case for F(2)
    if (n == 2 || m == 2 ||
        n % m == 0) 
    {
         Console.WriteLine( "Yes");
    }
      
    // if none of the above cases,
    // hence not divisible
    else
    {
        Console.WriteLine( "No");
    }
}
  
// Driver Code
public static void Main () 
{
    int m = 3, n = 9;
    check(n, m);
}
}
  
// This code is contributed
// by anuj_67.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check 
// if M-th fibonacci 
// divides N-th fibonacci
  
function check($n, $m)
{
    // exceptional case for F(2)
    if ($n == 2 || $m == 2 || 
        $n % $m == 0) 
    {
        echo "Yes" , "\n";
    }
      
    // if none of the above cases,
    // hence not divisible
    else 
    {
        echo "No" ," \n";
    }
}
  
// Driver Code
$m = 3; $n = 9;
check($n, $m);
  
// This code is contributed
// by anuj_67.
?>

chevron_right


Output:

Yes

Time Complexity: O(1).



My Personal Notes arrow_drop_up

Maths is the language of nature

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m, Smitha Dinesh Semwal