Skip to content
Related Articles

Related Articles

Compute modulus division by a power-of-2-number
  • Difficulty Level : Medium
  • Last Updated : 28 Apr, 2021

Compute n modulo d without division(/) and modulo(%) operators, where d is a power of 2 number. 
Let ith bit from right is set in d. For getting n modulus d, we just need to return 0 to i-1 (from right) bits of n as they are and other bits as 0.
For example if n = 6 (00..110) and d = 4(00..100). Last set bit in d is at position 3 (from right side). So we need to return last two bits of n as they are and other bits as 0, i.e., 00..010. 
Now doing it is so easy, guess it….
Yes, you have guessing it right. See the below program. 
 

C++




#include<stdio.h>
 
// This function will return n % d.
// d must be one of: 1, 2, 4, 8, 16, 32, …
unsigned int getModulo(unsigned int n,
                       unsigned int d)
{
return ( n & (d - 1) );
}        
 
// Driver Code
int main()
{
unsigned int n = 6;
 
// d must be a power of 2
unsigned int d = 4;
printf("%u moduo %u is %u", n, d, getModulo(n, d));
 
getchar();
return 0;
}    

Java




// Java code for Compute modulus division by
// a power-of-2-number
class GFG {
     
    // This function will return n % d.
    // d must be one of: 1, 2, 4, 8, 16, 32,
    static int getModulo(int n, int d)
    {
        return ( n & (d-1) );
    }    
     
    // Driver Code
    public static void main(String[] args)
    {
        int n = 6;
         
        /*d must be a power of 2*/
        int d = 4;
         
        System.out.println(n+" moduo " + d +
                    " is " + getModulo(n, d));
    }
}
 
// This code is contributed
// by Smitha Dinesh Semwal.

Python3




# Python code to demonstrate
# modulus division by power of 2
 
 
# This function will
# return n % d.
# d must be one of:
# 1, 2, 4, 8, 16, 32, …
def getModulo(n, d):
 
    return ( n & (d-1) )
          
# Driver program to
# test above function
n = 6
 
#d must be a power of 2
d = 4
print(n,"moduo",d,"is",
      getModulo(n, d))
 
# This code is contributed by
# Smitha Dinesh Semwal

C#




// C# code for Compute modulus
// division by a power-of-2-number
using System;
 
class GFG {
     
// This function will return n % d.
// d must be one of: 1, 2, 4, 8, 16, 32, …
static uint getModulo( uint n, uint d)
{
return ( n & (d-1) );
}    
 
// Driver code
static public void Main ()
   {
    uint n = 6;
    uint d = 4; /*d must be a power of 2*/
 
    Console.WriteLine( n + " moduo " + d +
                " is " + getModulo(n, d));
     
    }
}
// This code is contributed by vt_m.

PHP




<?php
// This function will return n % d.
// d must be one of: 1, 2, 4, 8, 16, 32, …
function getModulo($n, $d)
{
return ( $n & ($d - 1) );
}    
 
// Driver Code
$n = 6;
 
// d must be a power of 2
$d = 4;
echo $n ," moduo"," ", $d, " is ",
         " ",getModulo($n, $d);
     
// This code is contributed by vt_m.
?>

Javascript




<script>
// This function will return n % d.
// d must be one of: 1, 2, 4, 8, 16, 32, …
function getModulo(n,d)
{
    return ( n & (d - 1) );
}        
   
// Driver Code
 n = 6;
 d = 4;
  
document.write(n  +" moduo "+ d + " is "+ getModulo(n, d));
 
  // This code is contributed by simranarora5sos
</script>

https://www.youtube.com/watch?v=fSjW-wDghTs
 

References: 
http://graphics.stanford.edu/~seander/bithacks.html#ModulusDivisionEasy
Please write comments if you find any bug in the above program/algorithm or other ways to solve the same problem. 
 

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :