# Boggle (Find all possible words in a board of characters) | Set 1

Given a dictionary, a method to do lookup in dictionary and a M x N board where every cell has one character. Find all possible words that can be formed by a sequence of adjacent characters. Note that we can move to any of 8 adjacent characters, but a word should not have multiple instances of same cell.

Example:

```Input: dictionary[] = {"GEEKS", "FOR", "QUIZ", "GO"};
boggle[][]   = {{'G', 'I', 'Z'},
{'U', 'E', 'K'},
{'Q', 'S', 'E'}};
isWord(str): returns true if str is present in dictionary
else false.

Output:  Following words of dictionary are present
GEEKS
QUIZ``` ### We strongly recommend that you click here and practice it, before moving on to the solution.

The idea is to consider every character as a starting character and find all words starting with it. All words starting from a character can be found using Depth First Traversal. We do depth first traversal starting from every cell. We keep track of visited cells to make sure that a cell is considered only once in a word.

## C++

 `// C++ program for Boggle game ` `#include ` `#include ` `using` `namespace` `std; ` ` `  `#define M 3 ` `#define N 3 ` ` `  `// Let the given dictionary be following ` `string dictionary[] = { ``"GEEKS"``, ``"FOR"``, ``"QUIZ"``, ``"GO"` `}; ` `int` `n = ``sizeof``(dictionary) / ``sizeof``(dictionary); ` ` `  `// A given function to check if a given string is present in ` `// dictionary. The implementation is naive for simplicity. As ` `// per the question dictionary is given to us. ` `bool` `isWord(string& str) ` `{ ` `    ``// Linearly search all words ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``if` `(str.compare(dictionary[i]) == 0) ` `            ``return` `true``; ` `    ``return` `false``; ` `} ` ` `  `// A recursive function to print all words present on boggle ` `void` `findWordsUtil(``char` `boggle[M][N], ``bool` `visited[M][N], ``int` `i, ` `                   ``int` `j, string& str) ` `{ ` `    ``// Mark current cell as visited and append current character ` `    ``// to str ` `    ``visited[i][j] = ``true``; ` `    ``str = str + boggle[i][j]; ` ` `  `    ``// If str is present in dictionary, then print it ` `    ``if` `(isWord(str)) ` `        ``cout << str << endl; ` ` `  `    ``// Traverse 8 adjacent cells of boggle[i][j] ` `    ``for` `(``int` `row = i - 1; row <= i + 1 && row < M; row++) ` `        ``for` `(``int` `col = j - 1; col <= j + 1 && col < N; col++) ` `            ``if` `(row >= 0 && col >= 0 && !visited[row][col]) ` `                ``findWordsUtil(boggle, visited, row, col, str); ` ` `  `    ``// Erase current character from string and mark visited ` `    ``// of current cell as false ` `    ``str.erase(str.length() - 1); ` `    ``visited[i][j] = ``false``; ` `} ` ` `  `// Prints all words present in dictionary. ` `void` `findWords(``char` `boggle[M][N]) ` `{ ` `    ``// Mark all characters as not visited ` `    ``bool` `visited[M][N] = { { ``false` `} }; ` ` `  `    ``// Initialize current string ` `    ``string str = ``""``; ` ` `  `    ``// Consider every character and look for all words ` `    ``// starting with this character ` `    ``for` `(``int` `i = 0; i < M; i++) ` `        ``for` `(``int` `j = 0; j < N; j++) ` `            ``findWordsUtil(boggle, visited, i, j, str); ` `} ` ` `  `// Driver program to test above function ` `int` `main() ` `{ ` `    ``char` `boggle[M][N] = { { ``'G'``, ``'I'``, ``'Z'` `}, ` `                          ``{ ``'U'``, ``'E'``, ``'K'` `}, ` `                          ``{ ``'Q'``, ``'S'``, ``'E'` `} }; ` ` `  `    ``cout << ``"Following words of dictionary are present\n"``; ` `    ``findWords(boggle); ` `    ``return` `0; ` `} `

## Java

 `// Java program for Boggle game ` `class` `GFG { ` `    ``// Let the given dictionary be following ` `    ``static` `final` `String dictionary[] = { ``"GEEKS"``, ``"FOR"``, ``"QUIZ"``, ``"GUQ"``, ``"EE"` `}; ` `    ``static` `final` `int` `n = dictionary.length; ` `    ``static` `final` `int` `M = ``3``, N = ``3``; ` ` `  `    ``// A given function to check if a given string is present in ` `    ``// dictionary. The implementation is naive for simplicity. As ` `    ``// per the question dictionary is given to us. ` `    ``static` `boolean` `isWord(String str) ` `    ``{ ` `        ``// Linearly search all words ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``if` `(str.equals(dictionary[i])) ` `                ``return` `true``; ` `        ``return` `false``; ` `    ``} ` ` `  `    ``// A recursive function to print all words present on boggle ` `    ``static` `void` `findWordsUtil(``char` `boggle[][], ``boolean` `visited[][], ``int` `i, ` `                              ``int` `j, String str) ` `    ``{ ` `        ``// Mark current cell as visited and append current character ` `        ``// to str ` `        ``visited[i][j] = ``true``; ` `        ``str = str + boggle[i][j]; ` ` `  `        ``// If str is present in dictionary, then print it ` `        ``if` `(isWord(str)) ` `            ``System.out.println(str); ` ` `  `        ``// Traverse 8 adjacent cells of boggle[i][j] ` `        ``for` `(``int` `row = i - ``1``; row <= i + ``1` `&& row < M; row++) ` `            ``for` `(``int` `col = j - ``1``; col <= j + ``1` `&& col < N; col++) ` `                ``if` `(row >= ``0` `&& col >= ``0` `&& !visited[row][col]) ` `                    ``findWordsUtil(boggle, visited, row, col, str); ` ` `  `        ``// Erase current character from string and mark visited ` `        ``// of current cell as false ` `        ``str = ``""` `+ str.charAt(str.length() - ``1``); ` `        ``visited[i][j] = ``false``; ` `    ``} ` ` `  `    ``// Prints all words present in dictionary. ` `    ``static` `void` `findWords(``char` `boggle[][]) ` `    ``{ ` `        ``// Mark all characters as not visited ` `        ``boolean` `visited[][] = ``new` `boolean``[M][N]; ` ` `  `        ``// Initialize current string ` `        ``String str = ``""``; ` ` `  `        ``// Consider every character and look for all words ` `        ``// starting with this character ` `        ``for` `(``int` `i = ``0``; i < M; i++) ` `            ``for` `(``int` `j = ``0``; j < N; j++) ` `                ``findWordsUtil(boggle, visited, i, j, str); ` `    ``} ` ` `  `    ``// Driver program to test above function ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``char` `boggle[][] = { { ``'G'``, ``'I'``, ``'Z'` `}, ` `                            ``{ ``'U'``, ``'E'``, ``'K'` `}, ` `                            ``{ ``'Q'``, ``'S'``, ``'E'` `} }; ` ` `  `        ``System.out.println(``"Following words of dictionary are present"``); ` `        ``findWords(boggle); ` `    ``} ` `} `

## C#

 `// C# program for Boggle game ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG  ` `{ ` `    ``// Let the given dictionary be following ` `    ``static` `readonly` `String []dictionary = { ``"GEEKS"``, ``"FOR"``,  ` `                                            ``"QUIZ"``, ``"GUQ"``, ``"EE"` `}; ` `    ``static` `readonly` `int` `n = dictionary.Length; ` `    ``static` `readonly` `int` `M = 3, N = 3; ` ` `  `    ``// A given function to check if a given string  ` `    ``// is present in dictionary. The implementation is  ` `    ``// naive for simplicity. As per the question  ` `    ``// dictionary is given to us. ` `    ``static` `bool` `isWord(String str) ` `    ``{ ` `        ``// Linearly search all words ` `        ``for` `(``int` `i = 0; i < n; i++) ` `            ``if` `(str.Equals(dictionary[i])) ` `                ``return` `true``; ` `        ``return` `false``; ` `    ``} ` ` `  `    ``// A recursive function to print all words present on boggle ` `    ``static` `void` `findWordsUtil(``char` `[,]boggle, ``bool` `[,]visited,  ` `                              ``int` `i, ``int` `j, String str) ` `    ``{ ` `        ``// Mark current cell as visited and ` `        ``// append current character to str ` `        ``visited[i, j] = ``true``; ` `        ``str = str + boggle[i, j]; ` ` `  `        ``// If str is present in dictionary, ` `        ``// then print it ` `        ``if` `(isWord(str)) ` `            ``Console.WriteLine(str); ` ` `  `        ``// Traverse 8 adjacent cells of boggle[i,j] ` `        ``for` `(``int` `row = i - 1; row <= i + 1 && row < M; row++) ` `            ``for` `(``int` `col = j - 1; col <= j + 1 && col < N; col++) ` `                ``if` `(row >= 0 && col >= 0 && !visited[row, col]) ` `                    ``findWordsUtil(boggle, visited, row, col, str); ` ` `  `        ``// Erase current character from string and  ` `        ``// mark visited of current cell as false ` `        ``str = ``""` `+ str[str.Length - 1]; ` `        ``visited[i, j] = ``false``; ` `    ``} ` ` `  `    ``// Prints all words present in dictionary. ` `    ``static` `void` `findWords(``char` `[,]boggle) ` `    ``{ ` `        ``// Mark all characters as not visited ` `        ``bool` `[,]visited = ``new` `bool``[M, N]; ` ` `  `        ``// Initialize current string ` `        ``String str = ``""``; ` ` `  `        ``// Consider every character and look for all words ` `        ``// starting with this character ` `        ``for` `(``int` `i = 0; i < M; i++) ` `            ``for` `(``int` `j = 0; j < N; j++) ` `                ``findWordsUtil(boggle, visited, i, j, str); ` `    ``} ` ` `  `    ``// Driver Code ` `    ``public` `static` `void` `Main(String []args) ` `    ``{ ` `        ``char` `[,]boggle = { { ``'G'``, ``'I'``, ``'Z'` `}, ` `                           ``{ ``'U'``, ``'E'``, ``'K'` `}, ` `                           ``{ ``'Q'``, ``'S'``, ``'E'` `} }; ` ` `  `        ``Console.WriteLine(``"Following words of "` `+   ` `                          ``"dictionary are present"``); ` `        ``findWords(boggle); ` `    ``} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Note that the above solution may print the same word multiple times. For example, if we add “SEEK” to the dictionary, it is printed multiple times. To avoid this, we can use hashing to keep track of all printed words.

In below set 2, we have discussed Trie based optimized solution:
Boggle | Set 2 (Using Trie)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

20

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.