2D Transformation in Computer Graphics | Set 1 (Scaling of Objects)

A scaling transformation alters size of an object. In the scaling process, we either compress or expand the dimension of the object.
Scaling operation can be achieved by multiplying each vertex coordinate (x, y) of the polygon by scaling factor sx and sy to produce the transformed coordinates as (x’, y’).
So, x’ = x * sx and y’ = y * sy.
The scaling factor sx, sy scales the object in X and Y direction respectively. So, the above equation can be represented in matrix form:
 \begin{bmatrix} X'\\ Y'  \end{bmatrix}=\begin{bmatrix} Sx & 0 \\  0 & Sy \end{bmatrix}\begin{bmatrix} X\\ Y  \end{bmatrix}
Or P’ = S . P
Scaling process:

Note: If the scaling factor S is less than 1, then we reduce the size of the object. If the scaling factor S is greater than 1, then we increase size of the object.

Algorithm:

1. Make a 2x2 scaling matrix S as:
   Sx 0
   0  Sy
2. For each point of the polygon.
   (i) Make a 2x1 matrix P, where P[0][0] equals 
       to x coordinate of the point and P[1][0] 
       equals to y coordinate of the point.
   (ii) Multiply scaling matrix S with point 
        matrix P to get the new coordinate.
3. Draw the polygon using new coordinates.

Below is C implementation:



filter_none

edit
close

play_arrow

link
brightness_4
code

// C program to demonstrate scaling of abjects
#include<stdio.h>
#include<graphics.h>
  
// Matrix Multiplication to find new Coordinates.
// s[][] is scaling matrix. p[][] is to store
// points that needs to be scaled.
// p[0][0] is x coordinate of point.
// p[1][0] is y coordinate of given point.
void findNewCoordinate(int s[][2], int p[][1])
{
    int temp[2][1] = { 0 };
  
    for (int i = 0; i < 2; i++)
        for (int j = 0; j < 1; j++)
            for (int k = 0; k < 2; k++)
                temp[i][j] += (s[i][k] * p[k][j]);
  
    p[0][0] = temp[0][0];
    p[1][0] = temp[1][0];
}
  
// Scaling the Polygon
void scale(int x[], int y[], int sx, int sy)
{
    // Triangle before Scaling
    line(x[0], y[0], x[1], y[1]);
    line(x[1], y[1], x[2], y[2]);
    line(x[2], y[2], x[0], y[0]);
  
    // Initializing the Scaling Matrix.
    int s[2][2] = { sx, 0, 0, sy };
    int p[2][1];
  
    // Scaling the triangle
    for (int i = 0; i < 3; i++)
    {
        p[0][0] = x[i];
        p[1][0] = y[i];
  
        findNewCoordinate(s, p);
  
        x[i] = p[0][0];
        y[i] = p[1][0];
    }
  
    // Triangle after Scaling
    line(x[0], y[0], x[1], y[1]);
    line(x[1], y[1], x[2], y[2]);
    line(x[2], y[2], x[0], y[0]);
}
  
// Driven Program
int main()
{
    int x[] = { 100, 200, 300 };
    int y[] = { 200, 100, 200 };
    int sx = 2, sy = 2;
  
    int gd, gm;
    detectgraph(&gd, &gm);
    initgraph(&gd, &gm," ");
  
    scale(x, y, sx,sy);
    getch();
  
    return 0;
}

chevron_right


Output:

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up


Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.