Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Bresenham’s Line Generation Algorithm

  • Difficulty Level : Hard
  • Last Updated : 10 Mar, 2022

Given coordinate of two points A(x1, y1) and B(x2, y2). The task to find all the intermediate points required for drawing line AB on the computer screen of pixels. Note that every pixel has integer coordinates.
Examples: 
 

Input  : A(0,0), B(4,4)
Output : (0,0), (1,1), (2,2), (3,3), (4,4)

Input  : A(0,0), B(4,2)
Output : (0,0), (1,0), (2,1), (3,1), (4,2)

Below are some assumptions to keep algorithm simple. 
 

  1. We draw line from left to right.
  2. x1 < x2 and y1< y2
  3. Slope of the line is between 0 and 1. We draw a line from lower left to upper right.

Let us understand the process by considering the naive way first. 
 

// A naive way of drawing line
void naiveDrawLine(x1, x2, y1, y2)
{
   m = (y2 - y1)/(x2 - x1)
   for (x  = x1; x <= x2; x++) 
   {    
      // Assuming that the round function finds
      // closest integer to a given float.
      y = round(mx + c);    
      print(x, y); 
   }
}

Above algorithm works, but it is slow. The idea of Bresenham’s algorithm is to avoid floating point multiplication and addition to compute mx + c, and then computing round value of (mx + c) in every step. In Bresenham’s algorithm, we move across the x-axis in unit intervals. 
 

  1. We always increase x by 1, and we choose about next y, whether we need to go to y+1 or remain on y. In other words, from any position (Xk, Yk) we need to choose between (Xk + 1, Yk) and (Xk + 1, Yk + 1). 
     

Bresenham’s Line Generation Algorithm

  1. We would like to pick the y value (among Yk + 1 and Yk) corresponding to a point that is closer to the original line.

We need to a decision parameter to decide whether to pick Yk + 1 or Yk as next point. The idea is to keep track of slope error from previous increment to y. If the slope error becomes greater than 0.5, we know that the line has moved upwards one pixel, and that we must increment our y coordinate and readjust the error to represent the distance from the top of the new pixel – which is done by subtracting one from error.
 

// Modifying the naive way to use a parameter
// to decide next y.
void withDecisionParameter(x1, x2, y1, y2)
{
   m = (y2 - y1)/(x2 - x1)
   slope_error = [Some Initial Value]
   for (x = x1, y = y1; x = 0.5)  
   {       
      y++;       
      slope_error  -= 1.0;    
   }
}

How to avoid floating point arithmetic 
The above algorithm still includes floating point arithmetic. To avoid floating point arithmetic, consider the value below value m.
m = (y2 – y1)/(x2 – x1)
We multiply both sides by (x2 – x1)
We also change slope_error to slope_error * (x2 – x1). To avoid comparison with 0.5, we further change it to slope_error * (x2 – x1) * 2. 
Also, it is generally preferred to compare with 0 than 1. 
 

// Modifying the above algorithm to avoid floating 
// point arithmetic and use comparison with 0.
void bresenham(x1, x2, y1, y2)
{
   m_new = 2 * (y2 - y1)
   slope_error_new = [Some Initial Value]
   for (x = x1, y = y1; x = 0)  
   {       
      y++;       
      slope_error_new  -= 2 * (x2 - x1);    
   }
}

The initial value of slope_error_new is 2*(y2 – y1) – (x2 – x1). Refer this for proof of this value
Below is the implementation of above algorithm. 
 

C++




// C++ program for Bresenham’s Line Generation
// Assumptions :
// 1) Line is drawn from left to right.
// 2) x1 < x2 and y1 < y2
// 3) Slope of the line is between 0 and 1.
//    We draw a line from lower left to upper
//    right.
#include<bits/stdc++.h>
using namespace std;
   
// function for line generation
void bresenham(int x1, int y1, int x2, int y2)
{
   int m_new = 2 * (y2 - y1);
   int slope_error_new = m_new - (x2 - x1);
   for (int x = x1, y = y1; x <= x2; x++)
   {
      cout << "(" << x << "," << y << ")\n";
   
      // Add slope to increment angle formed
      slope_error_new += m_new;
   
      // Slope error reached limit, time to
      // increment y and update slope error.
      if (slope_error_new >= 0)
      {
         y++;
         slope_error_new  -= 2 * (x2 - x1);
      }
   }
}
   
// driver function
int main()
{
  int x1 = 3, y1 = 2, x2 = 15, y2 = 5;
  bresenham(x1, y1, x2, y2);
  return 0;
}

Java




// Java program for Bresenhams Line Generation
// Assumptions :
// 1) Line is drawn from left to right.
// 2) x1 < x2 and y1 < y2
// 3) Slope of the line is between 0 and 1.
// We draw a line from lower left to upper
// right.
class GFG
{
    // function for line generation
    static void bresenham(int x1, int y1, int x2,
                                         int y2)
    {
        int m_new = 2 * (y2 - y1);
        int slope_error_new = m_new - (x2 - x1);
     
        for (int x = x1, y = y1; x <= x2; x++)
        {
            System.out.print("(" +x + "," + y + ")\n");
 
            // Add slope to increment angle formed
            slope_error_new += m_new;
 
            // Slope error reached limit, time to
            // increment y and update slope error.
            if (slope_error_new >= 0)
            {
                y++;
                slope_error_new -= 2 * (x2 - x1);
            }
        }
    }        
 
    // Driver code
    public static void main (String[] args)
    {
        int x1 = 3, y1 = 2, x2 = 15, y2 = 5;   
        bresenham(x1, y1, x2, y2);
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Python 3 program for Bresenham’s Line Generation
# Assumptions :
# 1) Line is drawn from left to right.
# 2) x1 < x2 and y1 < y2
# 3) Slope of the line is between 0 and 1.
# We draw a line from lower left to upper
# right.
 
 
# function for line generation
def bresenham(x1,y1,x2, y2):
 
    m_new = 2 * (y2 - y1)
    slope_error_new = m_new - (x2 - x1)
 
    y=y1
    for x in range(x1,x2+1):
     
        print("(",x ,",",y ,")\n")
 
        # Add slope to increment angle formed
        slope_error_new =slope_error_new + m_new
 
        # Slope error reached limit, time to
        # increment y and update slope error.
        if (slope_error_new >= 0):
            y=y+1
            slope_error_new =slope_error_new - 2 * (x2 - x1)
         
     
 
 
# driver function
if __name__=='__main__':
    x1 = 3
    y1 = 2
    x2 = 15
    y2 = 5
    bresenham(x1, y1, x2, y2)
 
#This code is contributed by ash264

C#




// C# program for Bresenhams Line Generation
// Assumptions :
// 1) Line is drawn from left to right.
// 2) x1 < x2 and y1< y2
// 3) Slope of the line is between 0 and 1.
// We draw a line from lower left to upper
// right.
using System;
 
class GFG {
     
    // function for line generation
    static void bresenham(int x1, int y1, int x2,
                                        int y2)
    {
         
        int m_new = 2 * (y2 - y1);
        int slope_error_new = m_new - (x2 - x1);
     
        for (int x = x1, y = y1; x <= x2; x++)
        {
            Console.Write("(" + x + "," + y + ")\n");
 
            // Add slope to increment angle formed
            slope_error_new += m_new;
 
            // Slope error reached limit, time to
            // increment y and update slope error.
            if (slope_error_new >= 0)
            {
                y++;
                slope_error_new -= 2 * (x2 - x1);
            }
        }
    }        
 
    // Driver code
    public static void Main ()
    {
        int x1 = 3, y1 = 2, x2 = 15, y2 = 5;
         
        bresenham(x1, y1, x2, y2);
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP program for Bresenham’s
// Line Generation Assumptions :
 
// 1) Line is drawn from
// left to right.
// 2) x1 < x2 and y1 < y2
// 3) Slope of the line is
// between 0 and 1.
// We draw a line from lower
// left to upper right.
 
// function for line generation
function bresenham($x1, $y1, $x2, $y2)
{
$m_new = 2 * ($y2 - $y1);
$slope_error_new = $m_new - ($x2 - $x1);
for ($x = $x1, $y = $y1; $x <= $x2; $x++)
{
    echo "(" ,$x , "," , $y, ")\n";
 
    // Add slope to increment
    // angle formed
    $slope_error_new += $m_new;
 
    // Slope error reached limit,
    // time to increment y and
    // update slope error.
    if ($slope_error_new >= 0)
    {
        $y++;
        $slope_error_new -= 2 * ($x2 - $x1);
    }
}
}
 
// Driver Code
$x1 = 3; $y1 = 2; $x2 = 15; $y2 = 5;
bresenham($x1, $y1, $x2, $y2);
 
// This code is contributed by nitin mittal.
?>

Javascript




<script>
 
// javascript program for Bresenhams Line Generation
// Assumptions :
// 1) Line is drawn from left to right.
// 2) x1 < x2 and y1 < y2
// 3) Slope of the line is between 0 and 1.
// We draw a line from lower left to upper
// right.
 
    // function for line generation
    function bresenham(x1 , y1 , x2,y2)
    {
        var m_new = 2 * (y2 - y1);
        var slope_error_new = m_new - (x2 - x1);
     
        for (x = x1, y = y1; x <= x2; x++)
        {
            document.write("(" +x + "," + y + ")<br>");
 
            // Add slope to increment angle formed
            slope_error_new += m_new;
 
            // Slope error reached limit, time to
            // increment y and update slope error.
            if (slope_error_new >= 0)
            {
                y++;
                slope_error_new -= 2 * (x2 - x1);
            }
        }
    }        
 
    // Driver code
 
var x1 = 3, y1 = 2, x2 = 15, y2 = 5;   
bresenham(x1, y1, x2, y2);
 
// This code is contributed by Amit Katiyar
 
</script>

Output : 

(3,2)
(4,3)
(5,3)
(6,3)
(7,3)
(8,4)
(9,4)
(10,4)
(11,4)
(12,5)
(13,5)
(14,5)
(15,5) 

Time Complexity: O(x2 – x1)
Auxiliary Space: O(1) 
The above explanation is to provides a rough idea behind the algorithm. For detailed explanation and proof, readers can refer below references.

The above program only works if the slope of line is less than 1. Here is a program implementation for any kind of slope.

C++




#include <iostream>
//#include <graphics.h>
//Uncomment the graphics library functions if you are using it
using namespace std;
 
void plotPixel(int x1, int y1, int x2, int y2, int dx, int dy, int decide)
{
    //pk is initial decision making parameter
    //Note:x1&y1,x2&y2, dx&dy values are interchanged
    //and passed in plotPixel function so
    //it can handle both cases when m>1 & m<1
    int pk = 2 * dy - dx;
    for (int i = 0; i <= dx; i++)
    {
        cout << x1 << "," << y1 << endl;
        //checking either to decrement or increment the value
        //if we have to plot from (0,100) to (100,0)
        x1 < x2 ? x1++ : x1--;
        if (pk < 0)
        {
            //decision value will decide to plot
            //either  x1 or y1 in x's position
            if (decide == 0)
            {
               // putpixel(x1, y1, RED);
                pk = pk + 2 * dy;
            }
            else
            {
                //(y1,x1) is passed in xt
               // putpixel(y1, x1, YELLOW);
                pk = pk + 2 * dy;
            }
        }
        else
        {
            y1 < y2 ? y1++ : y1--;
            if (decide == 0)
            {
 
                //putpixel(x1, y1, RED);
            }
            else
            {
              //  putpixel(y1, x1, YELLOW);
            }
            pk = pk + 2 * dy - 2 * dx;
        }
    }
}
 
int main()
{
   // int gd = DETECT, gm;
   // initgraph(&gd, &gm, "xxx");
    int x1 = 100, y1 = 110, x2 = 125, y2 = 120, dx, dy, pk;
    //cin cout
    dx = abs(x2 - x1);
    dy = abs(y2 - y1);
    //If slope is less than one
    if (dx > dy)
    {
        //passing argument as 0 to plot(x,y)
        plotPixel(x1, y1, x2, y2, dx, dy, 0);
    }
    //if slope is greater than or equal to 1
    else
    {
        //passing argument as 1 to plot (y,x)
        plotPixel(y1, x1, y2, x2, dy, dx, 1);
    }
   // getch();
}
Output
100,110
101,110
102,111
103,111
104,112
105,112
106,112
107,113
108,113
109,114
110,114
111,114
112,115
113,115
114,116
115,116
116,116
117,117
118,117
119,118
120,118
121,118
122,119
123,119
124,120
125,120

Related Articles: 
 

  1. Mid-Point Line Generation Algorithm
  2. DDA algorithm for line drawing

Reference : 
https://csustan.csustan.edu/~tom/Lecture-Notes/Graphics/Bresenham-Line/Bresenham-Line.pdf 
https://en.wikipedia.org/wiki/Bresenham’s_line_algorithm 
http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Bresenhams-Algorithm.pdf
This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!