# Theory of Computation | Chomsky Hierarchy

According to Chomsky hierarchy, grammars are divided of 4 types:

Type 0 known as unrestricted grammar.
Type 1 known as context sensitive grammar.
Type 2 known as context free grammar.
Type 3 Regular Grammar.

Type 0: Unrestricted Grammar:

In Type 0
Type-0 grammars include all formal grammars. Type 0 grammar language are recognized by turing machine. These languages are also known as the Recursively Enumerable languages.

Grammar Production in the form of

where

is ( V + T)* V ( V + T)*
V : Variables
T : Terminals.

is ( V + T )*.
In type 0 there must be at least one variable on Left side of production.

For example,

Sab –> ba
A –> S.

Here, Variables are S, A and Terminals a, b.

Type 1: Context Sensitive Grammar)
Type-1 grammars generate the context-sensitive languages. The language generated by the grammar are recognized by the Linear Bound Automata
In Type 1
I. First of all Type 1 grammar should be Type 0.
II. Grammar Production in the form of

|| <= ||

i.e count of symbol in is less than or equal to

For Example,
S –> AB
AB –> abc
B –> b

Type 2: Context Free Grammar:
Type-2 grammars generate the context-free languages. The language generated by the grammar is recognized by a Pushdown automata. Type-2 grammars generate the context-free languages.
In Type 2,
1. First of all it should be Type 1.
2. Left hand side of production can have only one variable.

|| = 1.

Their is no restriction on .

For example,
S –> AB
A –> a
B –> b

Type 3: Regular Grammar:
Type-3 grammars generate regular languages. These languages are exactly all languages that can be accepted by a finite state automaton.

Type 3 is most restricted form of grammar.
Type 3 should be in the given form only :

V –> VT* / T*.
(or)
V –> T*V /T*

for example :
S –> ab.

My Personal Notes arrow_drop_up

Improved By : VaibhavRai3

Article Tags :

9

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.