Multistage Graph (Shortest Path)

A Multistage graph is a directed graph in which the nodes can be divided into a set of stages such that all edges are from a stage to next stage only (In other words there is no edge between vertices of same stage and from a vertex of current stage to previous stage).

We are give a multistage graph, a source and a destination, we need to find shortest path from source to destination. By convention, we consider source at stage 1 and destination as last stage.

Following is an example graph we will consider in this article :-



Now there are various strategies we can apply :-

  • The Brute force method of finding all possible paths between Source and Destination and then finding the minimum. That’s the WORST possible strategy.
  • Dijkstra’s Algorithm of Single Source shortest paths. This method will find shortest paths from source to all other nodes which is not required in this case. So it will take a lot of time and it doesn’t even use the SPECIAL feature that this MULTI-STAGE graph has.
  • Simple Greedy Method – At each node, choose the shortest outgoing path. If we apply this approach to the example graph give above we get the solution as 1 + 4 + 18 = 23. But a quick look at the graph will show much shorter paths available than 23. So the greedy method fails !
  • The best option is Dynamic Programming. So we need to find Optimal Sub-structure, Recursive Equations and Overlapping Sub-problems.

Optimal Substructure and Recursive Equation :-

We define the notation :- M(x, y) as the minimum cost to T(target node) from Stage x, Node y.

Shortest distance from stage 1, node 0 to 
destination, i.e., 7 is M(1, 0).

// From 0, we can go to 1 or 2 or 3 to
// reach 7.              
M(1, 0) = min(1 + M(2, 1),
              2 + M(2, 2),
              5 + M(2, 3))

This means that our problem of 0 —> 7 is now sub-divided into 3 sub-problems :-

So if we have total 'n' stages and target
as T, then the stopping condition  will be :-
M(n-1, i) = i ---> T + M(n, T) = i ---> T

Recursion Tree and Overlapping Sub-Problems:-
So, the hierarchy of M(x, y) evaluations will look something like this :-

In M(i, j), i is stage number and
j is node number

                   M(1, 0)
           /          |         \                             
          /           |          \                            
       M(2, 1)      M(2, 2)        M(2, 3)
    /      \        /     \         /    \
M(3, 4)  M(3, 5)  M(3, 4)  M(3, 5) M(3, 6)  M(3, 6)
 .         .       .       .          .        .
 .         .       .       .          .        .
 .         .       .       .          .        .

So, here we have drawn a very small part of the Recursion Tree and we can already see Overlapping Sub-Problems. We can largely reduce the number of M(x, y) evaluations using Dynamic Programming.

Implementation details:
The below implementation assumes that nodes are numbered from 0 to N-1 from first stage (source) to last stage (destination). We also assume that the input graph is multistage.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find shortest distance
// in a multistage graph.
#include<bits/stdc++.h>
using namespace std;
  
#define N 8
#define INF INT_MAX
  
// Returns shortest distance from 0 to
// N-1.
int shortestDist(int graph[N][N]) {
  
    // dist[i] is going to store shortest
    // distance from node i to node N-1.
    int dist[N];
  
    dist[N-1] = 0;
  
    // Calculating shortest path for
    // rest of the nodes
    for (int i = N-2 ; i >= 0 ; i--)
    {
  
        // Initialize distance from i to
        // destination (N-1)
        dist[i] = INF;
  
        // Check all nodes of next stages
        // to find shortest distance from
        // i to N-1.
        for (int j = i ; j < N ; j++)
        {
            // Reject if no edge exists
            if (graph[i][j] == INF)
                continue;
  
            // We apply recursive equation to
            // distance to target through j.
            // and compare with minimum distance 
            // so far.
            dist[i] = min(dist[i], graph[i][j] +
                                        dist[j]);
        }
    }
  
    return dist[0];
}
  
// Driver code
int main()
{
    // Graph stored in the form of an
    // adjacency Matrix
    int graph[N][N] =
      {{INF, 1, 2, 5, INF, INF, INF, INF},
       {INF, INF, INF, INF, 4, 11, INF, INF},
       {INF, INF, INF, INF, 9, 5, 16, INF},
       {INF, INF, INF, INF, INF, INF, 2, INF},
       {INF, INF, INF, INF, INF, INF, INF, 18},
       {INF, INF, INF, INF, INF, INF, INF, 13},
       {INF, INF, INF, INF, INF, INF, INF, 2}};
  
    cout << shortestDist(graph);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find shortest distance 
// in a multistage graph.
class GFG 
{
  
    static int N = 8;
    static int INF = Integer.MAX_VALUE;
  
    // Returns shortest distance from 0 to 
    // N-1. 
    public static int shortestDist(int[][] graph) 
    {
  
        // dist[i] is going to store shortest 
        // distance from node i to node N-1. 
        int[] dist = new int[N];
  
        dist[N - 1] = 0;
  
        // Calculating shortest path for 
        // rest of the nodes 
        for (int i = N - 2; i >= 0; i--) 
        {
  
            // Initialize distance from i to 
            // destination (N-1) 
            dist[i] = INF;
  
            // Check all nodes of next stages 
            // to find shortest distance from 
            // i to N-1. 
            for (int j = i; j < N; j++) 
            {
                // Reject if no edge exists 
                if (graph[i][j] == INF) 
                {
                    continue;
                }
  
                // We apply recursive equation to 
                // distance to target through j. 
                // and compare with minimum distance 
                // so far. 
                dist[i] = Math.min(dist[i], graph[i][j]
                        + dist[j]);
            }
        }
  
        return dist[0];
    }
  
    // Driver code 
    public static void main(String[] args) 
    {
        // Graph stored in the form of an 
        // adjacency Matrix 
        int[][] graph = new int[][]{{INF, 1, 2, 5, INF, INF, INF, INF},
        {INF, INF, INF, INF, 4, 11, INF, INF},
        {INF, INF, INF, INF, 9, 5, 16, INF},
        {INF, INF, INF, INF, INF, INF, 2, INF},
        {INF, INF, INF, INF, INF, INF, INF, 18},
        {INF, INF, INF, INF, INF, INF, INF, 13},
        {INF, INF, INF, INF, INF, INF, INF, 2}};
  
        System.out.println(shortestDist(graph));
    }
}
  
// This code has been contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find shortest 
# distance in a multistage graph. 
  
# Returns shortest distance from 
# 0 to N-1. 
def shortestDist(graph):
    global INF
  
    # dist[i] is going to store shortest 
    # distance from node i to node N-1. 
    dist = [0] *
  
    dist[N - 1] = 0
  
    # Calculating shortest path 
    # for rest of the nodes 
    for i in range(N - 2, -1, -1):
  
        # Initialize distance from  
        # i to destination (N-1) 
        dist[i] = INF 
  
        # Check all nodes of next stages 
        # to find shortest distance from 
        # i to N-1.
        for j in range(N):
              
            # Reject if no edge exists 
            if graph[i][j] == INF:
                continue
  
            # We apply recursive equation to 
            # distance to target through j. 
            # and compare with minimum 
            # distance so far. 
            dist[i] = min(dist[i], 
                          graph[i][j] + dist[j])
  
    return dist[0]
  
# Driver code 
N = 8
INF = 999999999999
  
# Graph stored in the form of an 
# adjacency Matrix 
graph = [[INF, 1, 2, 5, INF, INF, INF, INF], 
         [INF, INF, INF, INF, 4, 11, INF, INF], 
         [INF, INF, INF, INF, 9, 5, 16, INF], 
         [INF, INF, INF, INF, INF, INF, 2, INF], 
         [INF, INF, INF, INF, INF, INF, INF, 18],
         [INF, INF, INF, INF, INF, INF, INF, 13], 
         [INF, INF, INF, INF, INF, INF, INF, 2]] 
  
print(shortestDist(graph))
  
# This code is contributed by PranchalK

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find shortest distance 
// in a multistage graph.
using System; 
    
class GFG 
    static int N = 8; 
    static int INF = int.MaxValue; 
        
    // Returns shortest distance from 0 to 
    // N-1. 
    public static int shortestDist(int[,] graph) { 
        
        // dist[i] is going to store shortest 
        // distance from node i to node N-1. 
        int[] dist = new int[N]; 
        
        dist[N-1] = 0; 
        
        // Calculating shortest path for 
        // rest of the nodes 
        for (int i = N-2 ; i >= 0 ; i--) 
        
        
            // Initialize distance from i to 
            // destination (N-1) 
            dist[i] = INF; 
        
            // Check all nodes of next stages 
            // to find shortest distance from 
            // i to N-1. 
            for (int j = i ; j < N ; j++) 
            
                // Reject if no edge exists 
                if (graph[i,j] == INF) 
                    continue
        
                // We apply recursive equation to 
                // distance to target through j. 
                // and compare with minimum distance  
                // so far. 
                dist[i] = Math.Min(dist[i], graph[i,j] + 
                                            dist[j]); 
            
        
        
        return dist[0]; 
    
        
    // Driver code 
    static void Main() 
    
        // Graph stored in the form of an 
        // adjacency Matrix 
        int[,] graph = new int[,] 
          {{INF, 1, 2, 5, INF, INF, INF, INF}, 
           {INF, INF, INF, INF, 4, 11, INF, INF}, 
           {INF, INF, INF, INF, 9, 5, 16, INF}, 
           {INF, INF, INF, INF, INF, INF, 2, INF}, 
           {INF, INF, INF, INF, INF, INF, INF, 18}, 
           {INF, INF, INF, INF, INF, INF, INF, 13}, 
           {INF, INF, INF, INF, INF, INF, INF, 2}}; 
        
        Console.Write(shortestDist(graph));
    }
}
  
// This code is contributed by DrRoot_

chevron_right


Output:

9

Time Complexity : O(n2)



My Personal Notes arrow_drop_up

Interested in everything CS/IT Aspire with my Acer Aspire R11 to crack GATE2019 Avid Follower of Ravindrababu Ravula Trying my best to keep right up my alley with competitive coding Open Source and Web Development Projects I am somewhat good at Chess and spend loads of time on geeksforgeeks

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.