DFA of a string in which 2nd symbol from RHS is ‘a’
Prerequisite – Finite Automata Introduction
Problem – Draw deterministic finite automata (DFA) of the language containing the set of all strings over {a, b} in which 2nd symbol from RHS is ‘a’.
The strings in which 2nd last symbol is “a” are:
aa, ab, aab, aaa, aabbaa, bbbab etc
For example:
INPUT : baba OUTPUT: NOT ACCEPTED INPUT: aaab OUTPUT: ACCEPTED
Constructing the DFA of the given problem directly is very complicated. So, here we are going to design the non-deterministic finite automata (NFA) and then convert it to the deterministic finite automata (DFA).
The NFA of the language containing all the strings in which 2nd symbol from the RHS is “a” is:
Here, A is the initial state and C is the final state.
Now, we are going to construct the state transition table of the above NFA.
After that we will draw the state transition table of DFA using subset configuration on the state transition table of NFA. We will mention all the possible transition for a and b.
Now it’s become very easy to draw the DFA with the help of its transition table. In this DFA, we have four different states A, AB, ABC and AC, where ABC and AC are the final states and A is the initial state of the DFA.
This is our required DFA of the language containing the set of all strings over {a, b} in which 2nd symbol from RHS is ‘a’.
Transition table:
STATES | INPUT (a) | INPUT (b) |
—> A (initial state) | AB | A |
AB | ABC* (final state) | AC* (final state) |
AC* (final state) | AB | A |
ABC* (final state) | ABC* (final state) | AC* (final state) |
Python Implementation:
def stateA(n): #if length found 0 #print not accepted if ( len (n) = = 0 ): print ( "string not accepted" ) else : #if at index 0 #'a' found call #function stateAB if (n[ 0 ] = = 'a' ): stateAB(n[ 1 :]) #else if 'b' found #call function A. elif (n[ 0 ] = = 'b' ): stateA(n[ 1 :]) def stateAB(n): #if length found 0 #print not accepted if ( len (n) = = 0 ): print ( "string not accepted" ) else : #if at index 0 #'a' found call #function stateABC if (n[ 0 ] = = 'a' ): stateABC(n[ 1 :]) #else if 'b' found #call function AC. elif (n[ 0 ] = = 'b' ): stateAC(n[ 1 :]) def stateABC(n): #if length found 0 #print accepted if ( len (n) = = 0 ): print ( "string accepted" ) else : #if at index 0 #'a' found call #function stateABC if (n[ 0 ] = = 'a' ): stateABC(n[ 1 :]) #else if 'b' found #call function AC. elif (n[ 0 ] = = 'b' ): stateAC(n[ 1 :]) def stateAC(n): #if length found 0 #print accepted if ( len (n) = = 0 ): print ( "string accepted" ) else : #if at index 0 #'a' found call #function stateAB if (n[ 0 ] = = 'a' ): stateAB(n[ 1 :]) #else if 'b' found #call function A. elif (n[ 0 ] = = 'b' ): stateA(n[ 1 :]) #take string input n = input () #call stateA #to check the input stateA(n) |
Please Login to comment...