Question 1. Use suitable identities to find the following products:
(i) (x + 4) (x + 10)
Solution:
Using formula, (x + a) (x + b) = x2 + (a + b)x + ab
[So, a = 4 and b = 10]
(x + 4) (x + 10) = x2 + (4 + 10)x + (4 × 10)
= x2 + 14x + 40
(ii) (x + 8) (x – 10)
Solution:
Using formula, (x + a) (x + b) = x2 + (a + b)x + ab
[So, a = 8 and b = −10]
(x + 8) (x – 10) = x2 + (8 + (-10) )x + (8 × (-10))
= x2 + (8 – 10) x – 80
= x2 − 2x – 80
(iii) (3x + 4) (3x – 5)
Solution:
Using formula, (y + a) (y + b) = y2 + (a + b)y + ab
[So, y = 3x, a = 4 and b = −5]
(3x + 4) (3x − 5) = (3x)2 + [4 + (-5)]3x + 4 × (-5)
= 9x2 + 3x (4 – 5) – 20
= 9x2 – 3x – 20
(iv) (y2 +
) (y2 –
)
Solution:
Using formula, (a + b) (a – b) = a2 – b2
[So, a = y2 and b =
]
(y 2 +
) (y2 –
) = (y2)2 – (
)^2
= y 4 – 
Question 2. Evaluate the following products without multiplying directly:
(i) 103 × 107
Solution:
103 × 107 = (100 + 3) × (100 + 7)
Using formula, (x + a) (x + b) = x2 + (a + b)x + ab
Then,
x = 100
a = 3
b = 7
So, 103 × 107 = (100 + 3) × (100 + 7)
= (100)2 + (3 + 7)100 + (3 × 7)
= 10000 + 1000 + 21
= 11021
(ii) 95 × 96
Solution:
95 × 96 = (100 – 5) × (100 – 4)
Using formula, (x – a) (x – b) = x2 – (a + b)x + ab
Then, According to the identity
x = 100
a = 5
b = 4
So, 95 × 96 = (100 – 5) × (100 – 4)
= (100)2 – 100 (5+4) + (5 × 4)
= 10000 – 900 + 20
= 9120
(iii) 104 × 96
Solution:
104 × 96 = (100 + 4) × (100 – 4)
Using formula, (a + b) (a – b) = a2 – b2
Then,
a = 100
b = 4
So, 104 × 96 = (100 + 4) × (100 – 4)
= (100)2 – (4)2
= 10000 – 16
= 9984
Question 3. Factorize the following using appropriate identities:
(i) 9x2 + 6xy + y2
Solution:
9x2 + 6xy + y2 = (3x)2 + (2 × 3x × y) + y2
Using formula, a2 + 2ab + b2 = (a + b)2
Then,
a = 3x
b = y
9x2 + 6xy + y2 = (3x)2 + (2 × 3x × y) + y2
= (3x + y)2
= (3x + y) (3x + y)
(ii) 4y2 − 4y + 1
Solution:
4y2 − 4y + 1 = (2y)2 – (2 × 2y × 1) + 1
Using formula, a2 – 2ab + b2 = (a – b)2
Then,
a = 2y
b = 1
= (2y – 1)2
= (2y – 1) (2y – 1)
(iii) x2 – 
Solution:
x2 –
= x2 – 
Using formula, a2 – b2 = (a – b) (a + b)
Then,
a = x
b = 
= (x –
) (x +
)
Question 4. Expand each of the following, using suitable identities:
(i) (x + 2y + 4z)2
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then,
x = x
y = 2y
z = 4z
(x + 2y + 4z)2 = x2 + (2y)2 + (4z)2 + (2 × x × 2y) + (2 × 2y × 4z) + (2 × 4z × x)
= x2 + 4y2 + 16z2 + 4xy + 16yz + 8xz
(ii) (2x − y + z)2
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then,
x = 2x
y = −y
z = z
(2x − y + z)2 = (2x)2 + (−y)2 + z2 + (2 × 2x × −y) + (2 × −y × z) + (2 × z × 2x)
= 4x2 + y2 + z2 – 4xy – 2yz + 4xz
(iii) (−2x + 3y + 2z)2
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then,
x = −2x
y = 3y
z = 2z
(−2x + 3y + 2z)2 = (−2x)2 + (3y)2 + (2z)2 + (2 ×−2x × 3y) + (2 ×3y × 2z) + (2 ×2z × −2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz– 8xz
(iv) (3a – 7b – c)2
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then,
x = 3a
y = – 7b
z = – c
(3a – 7b – c)2 = (3a)2 + (– 7b)2 + (– c)2 + (2 × 3a × – 7b) + (2 × –7b × –c) + (2 × –c × 3a)
= 9a2 + 49b2 + c2 – 42ab + 14bc – 6ca
(v) (–2x + 5y – 3z)2
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then,
x = –2x
y = 5y
z = – 3z
(–2x + 5y – 3z)2 = (–2x)2 + (5y)2 + (–3z)2 + (2 × –2x × 5y) + (2 × 5y × – 3z) + (2 × –3z × –2x)
= 4x2 + 25y2 + 9z2 – 20xy – 30yz + 12zx
(vi) (
a –
b + 1)2
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then,
x =
a
y =
b
z = 1
(
a – (
)b + 1)2 = [
a]2 + [
b]2 + 12 + [2 x
}a x
b] + [2 x
b x 1] + [2 x 1 x
a]
=
a2 +
b2 + 1 –
ab – b +
a
Question 5. Factorize:
(i) 4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then, x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz = (2x)2 + (3y)2 + (−4z)2 + (2 × 2x × 3y) + (2 × 3y × −4z) + (2 × −4z × 2x)
= (2x + 3y – 4z)2
= (2x + 3y – 4z) (2x + 3y – 4z)
(ii) 2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
Solution:
Using formula, (x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
Then, x2 + y2 + z2 + 2xy + 2yz + 2zx = (x + y + z)2
2x2 + y2 + 8z2 – 2√2xy + 4√2yz – 8xz
= (-√2x)2 + (y)2 + (2√2z)2 + (2 × -√2x × y) + (2 × y × 2√2z) + (2 × 2√2 × −√2x)
= (−√2x + y + 2√2z)2
= (−√2x + y + 2√2z) (−√2x + y + 2√2z)
Question 6. Write the following cubes in expanded form:
(i) (2x + 1)3
Solution:
Using formula,(x + y)3 = x3 + y3 + 3xy(x + y)
(2x + 1)3= (2x)3 + 13 + (3 × 2x ×1) (2x + 1)
= 8x3 + 1 + 6x(2x + 1)
= 8x3 + 12x2 + 6x + 1
(ii) (2a − 3b)3
Solution:
Using formula, (x – y)3 = x3 – y3 – 3xy(x – y)
(2a − 3b)3 = (2a)3 − (3b)3 – (3 × 2a × 3b) (2a – 3b)
= 8a3 – 27b3 – 18ab(2a – 3b)
= 8a3 – 27b3 – 36a2b + 54ab2
(iii) (
x + 1)3
Solution:
Using formula, (x + y)3 = x3 + y3 + 3xy(x + y)
(
x+ 1)3 = (
x)3 + 13 + (3 ×
x × 1) (
x + 1)
=
x3 + 1 +
x2 +
x
= 
(iv) (x −
y)3
Solution:
Using formula, (x – y)3 = x3 – y3 – 3xy(x – y)
(x −
y)3 = x3 − [
y]3 – 3(x)
y[x −
y]
= x3 –
y3 – 2x2y +
xy2
Question 7. Evaluate the following using suitable identities:
(i) (99)3
Solution:
99 = 100 – 1
Using formula, (x – y)3 = x3 – y3 – 3xy(x – y)
(99)3 = (100 – 1)3
= (100)3 – 13 – (3 × 100 × 1) (100 – 1)
= 1000000 – 1 – 300(100 – 1)
= 1000000 – 1 – 30000 + 300
= 970299
(ii) (102)3
Solution:
102 = 100 + 2
Using formula, (x + y)3 = x3 + y3 + 3xy(x + y)
(100 + 2)3 = (100)3 + 23 + (3 × 100 × 2) (100 + 2)
= 1000000 + 8 + 600(100 + 2)
= 1000000 + 8 + 60000 + 1200
= 1061208
(iii) (998)3
Solution:
998 = 1000 – 2
Using formula, (x – y)3 = x3 – y3 – 3xy(x – y)
(998)3 = (1000 – 2)3
= (1000)3 – 23 – (3 × 1000 × 2) (1000 – 2)
= 1000000000 – 8 – 6000(1000 – 2)
= 1000000000 – 8 – 6000000 + 12000
= 994011992
Question 8. Factorise each of the following:
(i) 8a3 + b3 + 12a2b + 6ab2
Solution:
8a3 + b3 +12a2b + 6ab2 can also be written as (2a)3 + b3 + 3(2a)2b + 3(2a)(b)2
8a3 + b3 + 12a2b + 6ab2 = (2a)3 + b3 + 3(2a)2b + 3(2a)(b)2
Formula used, (x + y)3 = x3 + y3 + 3xy(x + y)
= (2a + b)3
= (2a + b) (2a + b) (2a + b)
(ii) 8a3 – b3 – 12a2b + 6ab2
Solution:
8a3 – b3 − 12a2b + 6ab2 can also be written as (2a)3– b3 – 3(2a)2b + 3(2a)(b)2
8a3 – b3 − 12a2b + 6ab2 = (2a)3 – b3 – 3(2a)2b + 3(2a)(b)2
formula used, (x – y)3 = x3 – y3 – 3xy(x – y)
= (2a – b)3
= (2a – b) (2a – b) (2a – b)
(iii) 27 – 125a3 – 135a + 225a2
Solution:
27 – 125a3 – 135a +225a2 can be also written as 33 – (5a)3 – 3(3)2(5a) + 3(3)(5a)2
27 – 125a3 – 135a + 225a2 = 33 – (5a)3 – 3(3)2(5a) + 3(3)(5a)2
Formula used, (x – y)3 = x3 – y3 – 3xy(x – y)
= (3 – 5a)3
= (3 – 5a) (3 – 5a) (3 – 5a)
(iv) 64a3 – 27b3 – 144a2b + 108ab2
Solution:
64a3 – 27b3 – 144a2b + 108ab2 can also be written as (4a)3 – (3b)3 – 3(4a)2(3b) + 3(4a)(3b)2
64a3 – 27b3 – 144a2b + 108ab2 = (4a)3 – (3b)3 – 3(4a)2(3b) + 3(4a)(3b)2
Formula used, (x – y)3 = x3 – y3 – 3xy(x – y)
= (4a – 3b)3
= (4a – 3b) (4a – 3b) (4a – 3b)
(v) 7p3 –
−
p2 +
p
Solution:
27p3 –
− (
) p2 + (
)p can also be written as (3p)3 –
– 3(3p)2(
) + 3(3p)(
)2
27p3 – (
) − (
) p2 + (
)p = (3p)3 – (
)3 – 3(3p)2(
) + 3(3p)(
)2
Formula used, (x – y)3 = x3 – y3 – 3xy(x – y)
= (3p –
)3
= (3p –
) (3p –
) (3p –
)
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!