# Carmichael Numbers

A number n is said to be a Carmichael number if it satisfies the following modular arithmetic condition:

```  power(b, n-1) MOD n = 1,
for all b ranging from 1 to n such that b and
n are relatively prime, i.e, gcd(b, n) = 1 ```

Given a positive integer n, find if it is a Carmichael number. These numbers have importance in Fermat Method for primality testing.

Examples :

```Input :  n = 8
Output : false
Explanation : 8 is not a Carmichael number because 3 is
relatively prime to 8 and (38-1) % 8
= 2187 % 8 is not 1.

Input :  n = 561
Output : true
```

## Recommended: Please solve it on “PRACTICE ” first, before moving on to the solution.

The idea is simple, we iterate through all numbers from 1 to n and for every relatively prime number, we check if its (n-1)th power under modulo n is 1 or not.

Below is a the program to check if a given number is Carmichael or not.

## C++

 `// A C++ program to check if a number is ` `// Carmichael or not. ` `#include ` `using` `namespace` `std; ` ` `  `// utility function to find gcd of two numbers ` `int` `gcd(``int` `a, ``int` `b) ` `{ ` `    ``if` `(a < b) ` `        ``return` `gcd(b, a); ` `    ``if` `(a % b == 0) ` `        ``return` `b; ` `    ``return` `gcd(b, a % b); ` `} ` ` `  `// utility function to find pow(x, y) under ` `// given modulo mod ` `int` `power(``int` `x, ``int` `y, ``int` `mod) ` `{ ` `    ``if` `(y == 0) ` `        ``return` `1; ` `    ``int` `temp = power(x, y / 2, mod) % mod; ` `    ``temp = (temp * temp) % mod; ` `    ``if` `(y % 2 == 1) ` `        ``temp = (temp * x) % mod; ` `    ``return` `temp; ` `} ` ` `  `// This function receives an integer n and ` `// finds if it's a Carmichael number ` `bool` `isCarmichaelNumber(``int` `n) ` `{ ` `    ``for` `(``int` `b = 2; b < n; b++) { ` `        ``// If "b" is relatively prime to n ` `        ``if` `(gcd(b, n) == 1) ` ` `  `            ``// And pow(b, n-1)%n is not 1, ` `            ``// return false. ` `            ``if` `(power(b, n - 1, n) != 1) ` `                ``return` `false``; ` `    ``} ` `    ``return` `true``; ` `} ` ` `  `// Driver function ` `int` `main() ` `{ ` `    ``cout << isCarmichaelNumber(500) << endl; ` `    ``cout << isCarmichaelNumber(561) << endl; ` `    ``cout << isCarmichaelNumber(1105) << endl; ` `    ``return` `0; ` `} `

## Java

 `// JAVA program to check if a number is ` `// Carmichael or not. ` `import` `java.io.*; ` ` `  `class` `GFG { ` ` `  `    ``// utility function to find gcd of ` `    ``// two numbers ` `    ``static` `int` `gcd(``int` `a, ``int` `b) ` `    ``{ ` `        ``if` `(a < b) ` `            ``return` `gcd(b, a); ` `        ``if` `(a % b == ``0``) ` `            ``return` `b; ` `        ``return` `gcd(b, a % b); ` `    ``} ` ` `  `    ``// utility function to find pow(x, y) ` `    ``// under given modulo mod ` `    ``static` `int` `power(``int` `x, ``int` `y, ``int` `mod) ` `    ``{ ` `        ``if` `(y == ``0``) ` `            ``return` `1``; ` `        ``int` `temp = power(x, y / ``2``, mod) % mod; ` `        ``temp = (temp * temp) % mod; ` `        ``if` `(y % ``2` `== ``1``) ` `            ``temp = (temp * x) % mod; ` `        ``return` `temp; ` `    ``} ` ` `  `    ``// This function receives an integer n and ` `    ``// finds if it's a Carmichael number ` `    ``static` `int` `isCarmichaelNumber(``int` `n) ` `    ``{ ` `        ``for` `(``int` `b = ``2``; b < n; b++) { ` `            ``// If "b" is relatively prime to n ` `            ``if` `(gcd(b, n) == ``1``) ` ` `  `                ``// And pow(b, n-1)%n is not 1, ` `                ``// return false. ` `                ``if` `(power(b, n - ``1``, n) != ``1``) ` `                    ``return` `0``; ` `        ``} ` `        ``return` `1``; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `main(String args[]) ` `    ``{ ` `        ``System.out.println(isCarmichaelNumber(``500``)); ` `        ``System.out.println(isCarmichaelNumber(``561``)); ` `        ``System.out.println(isCarmichaelNumber(``1105``)); ` `    ``} ` `} ` `// This code is contributed by Nikita Tiwari. `

## Python

 `# A Python program to check if a number is ` `# Carmichael or not. ` ` `  `# utility function to find gcd of two numbers ` `def` `gcd( a, b) : ` `    ``if` `(a < b) : ` `        ``return` `gcd(b, a) ` `    ``if` `(a ``%` `b ``=``=` `0``) : ` `        ``return` `b ` `    ``return` `gcd(b, a ``%` `b) ` ` `  `# utility function to find pow(x, y) under ` `# given modulo mod ` `def` `power(x, y, mod) : ` `    ``if` `(y ``=``=` `0``) : ` `        ``return` `1` `    ``temp ``=` `power(x, y ``/` `2``, mod) ``%` `mod ` `    ``temp ``=` `(temp ``*` `temp) ``%` `mod ` `    ``if` `(y ``%` `2` `=``=` `1``) : ` `        ``temp ``=` `(temp ``*` `x) ``%` `mod ` `    ``return` `temp ` ` `  ` `  `# This function receives an integer n and ` `# finds if it's a Carmichael number ` `def` `isCarmichaelNumber( n) : ` `    ``b ``=` `2` `    ``while` `b

## C#

 `// C# program to check if a number is ` `// Carmichael or not. ` `using` `System; ` ` `  `class` `GFG { ` ` `  `    ``// utility function to find gcd of ` `    ``// two numbers ` `    ``static` `int` `gcd(``int` `a, ``int` `b) ` `    ``{ ` `        ``if` `(a < b) ` `            ``return` `gcd(b, a); ` `        ``if` `(a % b == 0) ` `            ``return` `b; ` `        ``return` `gcd(b, a % b); ` `    ``} ` ` `  `    ``// utility function to find pow(x, y) ` `    ``// under given modulo mod ` `    ``static` `int` `power(``int` `x, ``int` `y, ``int` `mod) ` `    ``{ ` `        ``if` `(y == 0) ` `            ``return` `1; ` ` `  `        ``int` `temp = power(x, y / 2, mod) % mod; ` `        ``temp = (temp * temp) % mod; ` ` `  `        ``if` `(y % 2 == 1) ` `            ``temp = (temp * x) % mod; ` ` `  `        ``return` `temp; ` `    ``} ` ` `  `    ``// This function receives an integer n and ` `    ``// finds if it's a Carmichael number ` `    ``static` `int` `isCarmichaelNumber(``int` `n) ` `    ``{ ` `        ``for` `(``int` `b = 2; b < n; b++) { ` `            ``// If "b" is relatively prime to n ` `            ``if` `(gcd(b, n) == 1) ` ` `  `                ``// And pow(b, n-1)%n is not 1, ` `                ``// return false. ` `                ``if` `(power(b, n - 1, n) != 1) ` `                    ``return` `0; ` `        ``} ` `        ``return` `1; ` `    ``} ` ` `  `    ``// Driver function ` `    ``public` `static` `void` `Main() ` `    ``{ ` `        ``Console.WriteLine(isCarmichaelNumber(500)); ` `        ``Console.WriteLine(isCarmichaelNumber(561)); ` `        ``Console.WriteLine(isCarmichaelNumber(1105)); ` `    ``} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output :

```0
1
1
```

This article is contributed by Ashutosh Kumar. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : jit_t

Article Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.