Given an integer N, the task is to print N integers ? 109 such that no two consecutive of these integers are co-prime and every 3 consecutive are co-prime.
Examples:
Input: N = 3
Output: 6 15 10
Input: N = 4
Output: 6 15 35 14
Approach:
- We can just multiply consecutive primes and for the last number just multiply the gcd(last, last-1) * 2. We do this so that the (n – 1)th number, nth and 1st numbers can also follow the property mentioned in the problem statement.
- Another important part of the problem is the fact that the numbers should be ? 109. If you just multiply consecutive prime numbers, after around 3700 numbers, the value will cross 109. So we need to only use those prime numbers whose product won’t cross 109.
- To do this efficiently, consider a small number of primes, say the first 550 primes, and select them in a way such that on making a product no number gets repeated. We first choose every prime consecutively and then choose the primes with an interval of 2 and then 3 and so on. By doing that, we already make sure that no number gets repeated.
So we will select
5, 11, 17, …
Next time, we can start with 7 and select,
7, 13, 19, …
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
#define limit 1000000000
#define MAX_PRIME 2000000
#define MAX 1000000
#define I_MAX 50000
map< int , int > mp;
int b[MAX];
int p[MAX];
int j = 0;
bool prime[MAX_PRIME + 1];
void SieveOfEratosthenes( int n)
{
memset (prime, true , sizeof (prime));
for ( int p = 2; p * p <= n; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int p = 2; p <= n; p++) {
if (prime[p]) {
b[j++] = p;
}
}
}
int gcd( int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
void printSeries( int n)
{
SieveOfEratosthenes(MAX_PRIME);
int i, g, k, l, m, d;
int ar[I_MAX + 2];
for (i = 0; i < j; i++) {
if ((b[i] * b[i + 1]) > limit)
break ;
p[i] = b[i];
mp[b[i] * b[i + 1]] = 1;
}
d = 550;
bool flag = false ;
for (k = 2; (k < d - 1) && !flag; k++) {
for (m = 2; (m < d) && !flag; m++) {
for (l = m + k; l < d; l += k) {
if (((b[l] * b[l + k]) < limit)
&& (l + k) < d && p[i - 1] != b[l + k]
&& p[i - 1] != b[l]
&& mp[b[l] * b[l + k]] != 1) {
if (mp[p[i - 1] * b[l]] != 1) {
p[i] = b[l];
mp[p[i - 1] * b[l]] = 1;
i++;
}
}
if (i >= I_MAX) {
flag = true ;
break ;
}
}
}
}
for (i = 0; i < n; i++)
ar[i] = p[i] * p[i + 1];
for (i = 0; i < n - 1; i++)
cout << ar[i] << " " ;
g = gcd(ar[n - 1], ar[n - 2]);
cout << g * 2 << endl;
}
int main()
{
int n = 4;
printSeries(n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int limit = 1000000000 ;
static int MAX_PRIME = 2000000 ;
static int MAX = 1000000 ;
static int I_MAX = 50000 ;
static HashMap<Integer,
Integer> mp = new HashMap<Integer,
Integer>();
static int []b = new int [MAX];
static int []p = new int [MAX];
static int j = 0 ;
static boolean []prime = new boolean [MAX_PRIME + 1 ];
static void SieveOfEratosthenes( int n)
{
for ( int i = 0 ; i < MAX_PRIME + 1 ; i++)
prime[i] = true ;
for ( int p = 2 ; p * p <= n; p++)
{
if (prime[p] == true )
{
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int p = 2 ; p <= n; p++)
{
if (prime[p])
{
b[j++] = p;
}
}
}
static int gcd( int a, int b)
{
if (b == 0 )
return a;
return gcd(b, a % b);
}
static void printSeries( int n)
{
SieveOfEratosthenes(MAX_PRIME);
int i, g, k, l, m, d;
int []ar = new int [I_MAX + 2 ];
for (i = 0 ; i < j; i++)
{
if ((b[i] * b[i + 1 ]) > limit)
break ;
p[i] = b[i];
mp.put(b[i] * b[i + 1 ], 1 );
}
d = 550 ;
boolean flag = false ;
for (k = 2 ; (k < d - 1 ) && !flag; k++)
{
for (m = 2 ; (m < d) && !flag; m++)
{
for (l = m + k; l < d; l += k)
{
if (((b[l] * b[l + k]) < limit) &&
mp.containsKey(b[l] * b[l + k]) &&
mp.containsKey(p[i - 1 ] * b[l]) &&
(l + k) < d && p[i - 1 ] != b[l + k] &&
p[i - 1 ] != b[l] &&
mp.get(b[l] * b[l + k]) != 1 )
{
if (mp.get(p[i - 1 ] * b[l]) != 1 )
{
p[i] = b[l];
mp.put(p[i - 1 ] * b[l], 1 );
i++;
}
}
if (i >= I_MAX)
{
flag = true ;
break ;
}
}
}
}
for (i = 0 ; i < n; i++)
ar[i] = p[i] * p[i + 1 ];
for (i = 0 ; i < n - 1 ; i++)
System.out.print(ar[i]+ " " );
g = gcd(ar[n - 1 ], ar[n - 2 ]);
System.out.print(g * 2 );
}
public static void main(String[] args)
{
int n = 4 ;
printSeries(n);
}
}
|
Python3
limit = 1000000000
MAX_PRIME = 2000000
MAX = 1000000
I_MAX = 50000
mp = {}
b = [ 0 ] * MAX
p = [ 0 ] * MAX
j = 0
prime = [ True ] * (MAX_PRIME + 1 )
def SieveOfEratosthenes(n):
global j
p = 2
while p * p < = n:
if (prime[p] = = True ):
for i in range (p * p, n + 1 , p):
prime[i] = False
p + = 1
for p in range ( 2 , n + 1 ):
if (prime[p]):
b[j] = p
j + = 1
def gcd(a, b):
if (b = = 0 ):
return a
return gcd(b, a % b)
def printSeries(n):
SieveOfEratosthenes(MAX_PRIME)
ar = [ 0 ] * (I_MAX + 2 )
for i in range (j):
if ((b[i] * b[i + 1 ]) > limit):
break
p[i] = b[i]
mp[b[i] * b[i + 1 ]] = 1
d = 550
flag = False
k = 2
while (k < d - 1 ) and not flag:
m = 2
while (m < d) and not flag:
for l in range (m + k, d, k):
if (((b[l] * b[l + k]) < limit) and
(l + k) < d and p[i - 1 ] ! = b[l + k] and
p[i - 1 ] ! = b[l] and
((b[l] * b[l + k] in mp) and
mp[b[l] * b[l + k]] ! = 1 )):
if (mp[p[i - 1 ] * b[l]] ! = 1 ):
p[i] = b[l]
mp[p[i - 1 ] * b[l]] = 1
i + = 1
if (i > = I_MAX):
flag = True
break
m + = 1
k + = 1
for i in range (n):
ar[i] = p[i] * p[i + 1 ]
for i in range (n - 1 ):
print (ar[i], end = " " )
g = gcd(ar[n - 1 ], ar[n - 2 ])
print (g * 2 )
if __name__ = = "__main__" :
n = 4
printSeries(n)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int limit = 1000000000;
static int MAX_PRIME = 2000000;
static int MAX = 1000000;
static int I_MAX = 50000;
static Dictionary< int ,
int > mp = new Dictionary< int ,
int >();
static int []b = new int [MAX];
static int []p = new int [MAX];
static int j = 0;
static bool []prime = new bool [MAX_PRIME + 1];
static void SieveOfEratosthenes( int n)
{
for ( int i = 0; i < MAX_PRIME + 1; i++)
prime[i] = true ;
for ( int p = 2; p * p <= n; p++)
{
if (prime[p] == true )
{
for ( int i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for ( int p = 2; p <= n; p++)
{
if (prime[p])
{
b[j++] = p;
}
}
}
static int gcd( int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static void printSeries( int n)
{
SieveOfEratosthenes(MAX_PRIME);
int i, g, k, l, m, d;
int []ar = new int [I_MAX + 2];
for (i = 0; i < j; i++)
{
if ((b[i] * b[i + 1]) > limit)
break ;
p[i] = b[i];
mp.Add(b[i] * b[i + 1], 1);
}
d = 550;
bool flag = false ;
for (k = 2; (k < d - 1) && !flag; k++)
{
for (m = 2; (m < d) && !flag; m++)
{
for (l = m + k; l < d; l += k)
{
if (((b[l] * b[l + k]) < limit) &&
mp.ContainsKey(b[l] * b[l + k]) &&
mp.ContainsKey(p[i - 1] * b[l]) &&
(l + k) < d && p[i - 1] != b[l + k] &&
p[i - 1] != b[l] &&
mp[b[l] * b[l + k]] != 1)
{
if (mp[p[i - 1] * b[l]] != 1)
{
p[i] = b[l];
mp.Add(p[i - 1] * b[l], 1);
i++;
}
}
if (i >= I_MAX)
{
flag = true ;
break ;
}
}
}
}
for (i = 0; i < n; i++)
ar[i] = p[i] * p[i + 1];
for (i = 0; i < n - 1; i++)
Console.Write(ar[i] + " " );
g = gcd(ar[n - 1], ar[n - 2]);
Console.Write(g * 2);
}
public static void Main(String[] args)
{
int n = 4;
printSeries(n);
}
}
|
Javascript
<script>
let limit = 1000000000
let MAX_PRIME = 2000000
let MAX = 1000000
let I_MAX = 50000
let mp = new Map();
let b = new Array(MAX);
let p = new Array(MAX);
let j = 0;
let prime = new Array(MAX_PRIME + 1);
function SieveOfEratosthenes(n)
{
prime.fill( true );
for (let p = 2; p * p <= n; p++) {
if (prime[p] == true ) {
for (let i = p * p; i <= n; i += p)
prime[i] = false ;
}
}
for (let p = 2; p <= n; p++) {
if (prime[p]) {
b[j++] = p;
}
}
}
function gcd(a, b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
function printSeries(n)
{
SieveOfEratosthenes(MAX_PRIME);
let i, g, k, l, m, d;
let ar = new Array(I_MAX + 2);
for (i = 0; i < j; i++) {
if ((b[i] * b[i + 1]) > limit)
break ;
p[i] = b[i];
mp[b[i] * b[i + 1]] = 1;
}
d = 550;
let flag = false ;
for (k = 2; (k < d - 1) && !flag; k++) {
for (m = 2; (m < d) && !flag; m++) {
for (l = m + k; l < d; l += k) {
if (((b[l] * b[l + k]) < limit)
&& (l + k) < d && p[i - 1] != b[l + k]
&& p[i - 1] != b[l] && mp[b[l] * b[l + k]] != 1) {
if (mp[p[i - 1] * b[l]] != 1) {
p[i] = b[l];
mp[p[i - 1] * b[l]] = 1;
i++;
}
}
if (i >= I_MAX) {
flag = true ;
break ;
}
}
}
}
for (i = 0; i < n; i++)
ar[i] = p[i] * p[i + 1];
for (i = 0; i < n - 1; i++)
document.write(ar[i] + " " );
g = gcd(ar[n - 1], ar[n - 2]);
document.write( g * 2 + "<br>" );
}
let n = 4;
printSeries(n);
</script>
|
Time Complexity: O(MAX_PRIME * I_MAX^2).
The time complexity of the above code is O(MAX_PRIME * I_MAX^2). Here MAX_PRIME is the maximum prime number that we have considered, I_MAX is the maximum number of prime numbers that can be produced and MAX is the maximum number that we have considered.
Space Complexity: O(MAX_PRIME + I_MAX).
The space complexity of the above code is O(MAX_PRIME + I_MAX). Here MAX_PRIME is the maximum prime number that we have considered and I_MAX is the maximum number of prime numbers that can be produced.
Another approach: List all the prime numbers up to 6 million by using the Sieve of Eratosthenes. We know the base condition i.e. N = 3 forms {6, 10, 15}.
So, we use these three values to generate further terms of the sequence.
Like {2, 3, 5}, these primes can not be used to generate sequences because they are already used in {6, 10, 15}. We also can’t use {7, 11}, which we’ll see later.
Now we have a prime list {13, 17, 19, 23, 29, ……}. We take the first prime and multiply it with 6, second with 15, third with 10, again 4th with 6, and so on…
13 * 6, 17 * 15, 19 * 10, 23 * 6, 29 * 15, ........upto N - 2 terms.
(N - 1)th term = (N - 1)th prime * 7.
Nth term = 7 * 11.
again, first term = first term * 11 to make 1st and last noncoprime.
For example, N = 5
6 * 11 * 13, 15 * 17, 10 * 19, 11 * 19, 7 * 11
Now we see that we can not use 7 and 11 from the list as these are used to generate the last and second last term.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
const int MAX = 620000;
int prime[MAX];
void Sieve()
{
for ( int i = 2; i < MAX; i++) {
if (prime[i] == 0) {
for ( int j = 2 * i; j < MAX; j += i) {
prime[j] = 1;
}
}
}
}
void printSequence( int n)
{
Sieve();
vector< int > v, u;
for ( int i = 13; i < MAX; i++) {
if (prime[i] == 0) {
v.push_back(i);
}
}
if (n == 3) {
cout << 6 << " " << 10 << " " << 15;
return ;
}
int k;
for (k = 0; k < n - 2; k++) {
if (k % 3 == 0) {
u.push_back(v[k] * 6);
}
else if (k % 3 == 1) {
u.push_back(v[k] * 15);
}
else {
u.push_back(v[k] * 10);
}
}
k--;
u.push_back(v[k] * 7);
u.push_back(7 * 11);
u[0] = u[0] * 11;
for ( int i = 0; i < u.size(); i++) {
cout << u[i] << " " ;
}
}
int main()
{
int n = 4;
printSequence(n);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int MAX = 620000 ;
static int [] prime = new int [MAX];
static void Sieve()
{
for ( int i = 2 ; i < MAX; i++)
{
if (prime[i] == 0 )
{
for ( int j = 2 * i;
j < MAX; j += i)
{
prime[j] = 1 ;
}
}
}
}
static void printSequence( int n)
{
Sieve();
Vector<Integer> v = new Vector<Integer>();
Vector<Integer> u = new Vector<Integer>();
for ( int i = 13 ; i < MAX; i++)
{
if (prime[i] == 0 )
{
v.add(i);
}
}
if (n == 3 )
{
System.out.print( 6 + " " + 10 + " " + 15 );
return ;
}
int k;
for (k = 0 ; k < n - 2 ; k++)
{
if (k % 3 == 0 )
{
u.add(v.get(k) * 6 );
}
else if (k % 3 == 1 )
{
u.add(v.get(k) * 15 );
}
else
{
u.add(v.get(k) * 10 );
}
}
k--;
u.add(v.get(k) * 7 );
u.add( 7 * 11 );
u.set( 0 , u.get( 0 ) * 11 );
for ( int i = 0 ; i < u.size(); i++)
{
System.out.print(u.get(i) + " " );
}
}
public static void main(String[] args)
{
int n = 4 ;
printSequence(n);
}
}
|
Python3
MAX = 620000
prime = [ 0 ] * MAX
def Sieve():
for i in range ( 2 , MAX ):
if (prime[i] = = 0 ):
for j in range ( 2 * i, MAX , i):
prime[j] = 1
def printSequence (n):
Sieve()
v = []
u = []
for i in range ( 13 , MAX ):
if (prime[i] = = 0 ):
v.append(i)
if (n = = 3 ):
print ( 6 , 10 , 15 )
return
k = 0
for k in range (n - 2 ):
if (k % 3 = = 0 ):
u.append(v[k] * 6 )
elif (k % 3 = = 1 ):
u.append(v[k] * 15 )
else :
u.append(v[k] * 10 )
u.append(v[k] * 7 )
u.append( 7 * 11 )
u[ 0 ] = u[ 0 ] * 11
print ( * u)
if __name__ = = '__main__' :
n = 4
printSequence(n)
|
C#
using System;
using System.Collections.Generic;
class GFG
{
static int MAX = 620000;
static int [] prime = new int [MAX];
static void Sieve()
{
for ( int i = 2; i < MAX; i++)
{
if (prime[i] == 0)
{
for ( int j = 2 * i;
j < MAX; j += i)
{
prime[j] = 1;
}
}
}
}
static void printSequence( int n)
{
Sieve();
List< int > v = new List< int >();
List< int > u = new List< int >();
for ( int i = 13; i < MAX; i++)
{
if (prime[i] == 0)
{
v.Add(i);
}
}
if (n == 3)
{
Console.Write(6 + " " + 10 + " " + 15);
return ;
}
int k;
for (k = 0; k < n - 2; k++)
{
if (k % 3 == 0)
{
u.Add(v[k] * 6);
}
else if (k % 3 == 1)
{
u.Add(v[k] * 15);
}
else
{
u.Add(v[k] * 10);
}
}
k--;
u.Add(v[k] * 7);
u.Add(7 * 11);
u[0] = u[0] * 11;
for ( int i = 0; i < u.Count; i++)
{
Console.Write(u[i] + " " );
}
}
public static void Main(String[] args)
{
int n = 4;
printSequence(n);
}
}
|
Javascript
<script>
let MAX = 620000;
let prime = new Array(MAX);
for (let i=0;i<MAX;i++)
{
prime[i]=0;
}
function Sieve()
{
for (let i = 2; i < MAX; i++)
{
if (prime[i] == 0)
{
for (let j = 2 * i;
j < MAX; j += i)
{
prime[j] = 1;
}
}
}
}
function printSequence(n)
{
Sieve();
let v = [];
let u = [];
for (let i = 13; i < MAX; i++)
{
if (prime[i] == 0)
{
v.push(i);
}
}
if (n == 3)
{
document.write(6 + " " + 10 + " " + 15);
return ;
}
let k;
for (k = 0; k < n - 2; k++)
{
if (k % 3 == 0)
{
u.push(v[k] * 6);
}
else if (k % 3 == 1)
{
u.push(v[k] * 15);
}
else
{
u.push(v[k] * 10);
}
}
k--;
u.push(v[k] * 7);
u.push(7 * 11);
u[0] = u[0] * 11;
for (let i = 0; i < u.length; i++)
{
document.write(u[i] + " " );
}
}
let n = 4;
printSequence(n);
</script>
|
Time Complexity : O(n*log(n))
Space Complexity: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!