Open In App

Area of Quadrilateral

Last Updated : 10 Apr, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Area of Quadrilateral: The Area of a quadrilateral is the space inside the boundary of a quadrilateral or in other words, the space enclosed by the edges of a quadrilateral. A quadrilateral can be defined as a closed two-dimensional shape that has four sides or edges, and also four corners or vertices. In mensuration, the shape of objects is classified based on the number of sides of the polygon.

Quadrilaterals or any polygons can be classified into two categories, regular quadrilaterals/polygons i.e., all sides are of equal length, and irregular quadrilaterals i.e., all sides are not equal. This article explores the Area of Quadrilateral, using different methods, along with its formula, solved examples, and practice problems.

What is a Quadrilateral?

A quadrilateral is a polygon with four sides. A closed two-dimensional figure, formed by joining the four non-collinear points is called a quadrilateral. A quadrilateral has four sides, four angles, and four vertices. The sides of the quadrilateral may or may not be equal. Various types of quadrilaterals can be defined based on the properties of their angles, sides, and diagonals, some of which are as follows:

  • Rectangle
  • Square
  • Rhombus
  • Parallelogram
  • Trapezium
  • Kite

Examples of Quadrilateral

Properties of Quadrilateral

All quadrilaterals have some common properties that are as follows:

  • A closed figure has four sides.
  • The summation of the Interior angles of a quadrilateral is 360 degrees.
  • The four sides can vary in length or maybe equal depending upon the type of quadrilateral.

Area of Quadrilateral

Area of a quadrilateral is the space enclosed by all the boundaries of a quadrilateral. Area of a quadrilateral is measured in square units such as m2, in2, cm2, etc. Area of a regular quadrilateral is calculated by using different formulas. For calculating the area of irregular quadrilateral various formulas are used which are discussed below in this article.

Area of Quadrilateral Formula by Dividing it into Two Triangles

In a quadrilateral ABCD, the length of the diagonal BD is ‘d’. ABCD can be divided into two triangles Δ ABD, and Δ BCD by the diagonal BD. For calculating the area of the quadrilateral ABCD we calculate the area of individual triangles and add them accordingly. But for calculating area of a triangle, its height must be known. Let us assume that the heights of the triangles ABD and BCD be h1 and h2 respectively. 

Area of the triangle ABD = (1/2) × d × h1.

Area of the triangle BCD = (1/2) × d × h2.

Area of Quadrilateral Formula by Dividing it into Two Triangles

From the figure, the area of the quadrilateral ABCD = area of ΔABD + area of ΔBCD.

Area of the quadrilateral ABCD = (1/2) × d × h1+ (1/2) × d × h2 = (1/2) × d ×( h1+h2 ).

Thus, the formula used to find the area of a quadrilateral is,

Area of Quadrilateral = (1/2) × Diagonal × (Sum of heights) = (1/2) × d ×( h1+h2 )

Area of Quadrilateral with Vertices

If vertices of a quadrilateral are given then its area is calculated by the given formula. Suppose  A(x1, y1), B(x2, y2), C(x3, y3), and D(x4, y4) be the vertices of a quadrilateral ABCD.

Then its area is calculated by using two different methods which are discussed below:

Area of Quadrilateral with Vertices

Area of Quadrilateral Using Coordinates

Area of Quadrilateral Using Coordinates

Follow the directions of the arrow, and add the diagonal products, i.e., x1y2, x2y3, x3y4, and x4y1.

(x1y2 + x2y3 + x3y4 + x4y1)….(i)

Now, follow the dotted arrows and add the diagonal products, i.e., x2y1, x3y2, x4y3, and x1y4.

(x2y1 + x3y2 + x4y3 + x1y4)….(ii)

Now, subtract equation (ii) from (i) and multiply the result by 1/2.

(1/2) × [(x1y2 + x2y3 + x3y4 + x4y1) – (x2y1 + x3y2 + x4y3 + x1y4)]

Thus, the formula for the area of the quadrilateral when vertices are given:

Area of Quadrilateral Using Coordinates

Area of Quadrilateral Using Area of Triangle

For this method, we divide the given quadrilateral into two triangles and then find the area of each triangle separately. At last, both the area of triangles are added to find the final area of the quadrilateral.

Area of quadrilateral ABCD = Area of triangle ABD + Area of triangle BCD

Area of a triangle with vertices P(x1, y1), Q(x2, y2), and R(x3, y3) is given by

Area of Quadrilateral Using Area of Triangle

Area of Quadrilateral Using Bretschneider′s Formula

When two opposite angles and all the sides of a quadrilateral are given, we can calculate its area using Bretschneider’s Formula which is the extension of heron’s formula for quadrilaterals and is given as follows:

Area of Quadrilateral Using Bretschneider′s Formula

How to find the Area of Quadrilateral?

Area of a quadrilateral is found by using the steps discussed below:

Step 1: Mark the length of the diagonal and the length of the perpendicular to it from both vertices.

Step 2: Put these values in the given formula Area = (1/2) × d ×( h1+h2 ), where d is the length of the diagonal and h1, h2 are lengths of the perpendicular from diagonal to opposite vertices.

Step 3: Answer obtained from the above step is the required area and is measured in unit2

Area of Some Quadrilaterals

Some specific quadrilaterals are very common and are used in our daily life and their formula for areas are explained in the article given below:

Area of a Square

A square is a special case of a rectangle in which the four sides are equal and all the sides are parallel to each other. In a square diagonal bisect perpendicularly to each other.

Area of a Square

Read More on Area of Square

Area of a Rectangle

A rectangle is a closed figure having four sides in which opposite sides are equal and parallel to each other and the diagonals of the rectangles bisect at 90 degrees.

Area of a Rectangle

Read More on Area of Rectangle

Area of Rhombus 

A Rhombus is a special case of the square in which all the four sides and opposite angles are the same in measure and the opposite sides are parallel and the sum of the adjacent angles of a rhombus is equal to 180 degrees.

Area of Rhombus

Where D1 and D2 are the length of diagonals of Rhombus.

Read More on Area of Rhombus

Area of Parallelogram

The quadrilateral in which opposite sides are equal and parallel to each other is known as a parallelogram. In this, diagonals bisect each other and the opposite angles are of equal measure in which the sum of two adjacent angles of a parallelogram is equal to 180 degrees.

Area of Parallelogram

Read More on Area of Parallelogram

Area of Trapezium

This quadrilateral is somewhat different from the others as there is only one pair of the opposite side of a trapezium parallel to each other and the adjacent sides are supplementary to each other and the diagonals bisect each other in the same ratio.

Area of Trapezium

Area of Trapezium

Read More on Area of Trapezium

Area of Kite

Kite is a special quadrilateral in which each pair of consecutive sides is congruent, but the opposite sides are not congruent. In this, the largest diagonal of a kite bisects the smallest diagonal.

Area of Kite

where, D1 = long diagonal of kite(CD), D2 = short diagonal of kite(AB)

Read More: Area of Kite

Area of Quadrilateral Solved Examples

Example 1: Find the area of the quadrilateral ABCD when its vertices are (1, 2), (5, 6), (4, −6), and (−5, 2).

Solution:

Let A(1, 2), B(5, 6), C(4, -6), and D(-5, 2) be the vertices of a quadrilateral ABCD.

A(1, 2) = (x1, y1), B(5, 6) = (x2, y2), C(4, -6) = (x3, y3), D(-5, 2) = (x4, y4)

We know that,

Area of Quadrilateral = (1/2) × [(x1y2 + x2y3 + x3y4 + x4y1) – (x2y1 + x3y2 + x4y3 + x1y4)]

⇒ Area of Quadrilateral = (½). {[1(6) + 5(-6) + 4(2) + (-5)2] – {[5(2) + 4(6) + (-5)(-6) + 1(2)]}

⇒ Area of Quadrilateral = (½).[(6 – 30 + 8 – 10) – (10 + 24 + 30 + 2)]

⇒ Area of Quadrilateral  = (½) [-26 – 66]

⇒ Area of Quadrilateral = 92/2 (area is never negative)

⇒ Area of Quadrilateral = 46 unit2

Example 2: Find the area of the trapezium if height is 5 cm and AB and CD are given as 10 and 6 cm respectively.

Solution: 

Given, AB = 10cm, CD = 6cm, height = 5cm

According to the formulae,

Area of Trapezium = (1/2) h (AB+CD)

⇒ Area of Trapezium = 1/2 x 5 x (10 + 6)

⇒ Area of Trapezium = 40 cm2

Example 3: Find the area of a kite whose longest and shortest diagonals are 20cm and 10cm respectively.

Solution: 

Length of longest diagonal, D1= 20 cm

Length of shortest diagonal, D2= 10 cm

So, Area of kite =1/2 x D1 x D2

⇒ Area of kite = 1/2 x 20 x 10

⇒ Area of kite  = 100 cm2

Example 4: Calculate the area of a parallelogram, if the base and height are 10 m and 15 m respectively.

Solution: 

Given, base = 10 m and height = 15 m

Area of Parallelogram = Base x Height

⇒ Area of Parallelogram = 10 x 15

⇒ Area of Parallelogram = 150 m2

Example 5: Given the area of the rhombus is 120-meter square then find the length of one of the diagonals if the other diagonal is of length 12 m.

Solution: 

Since we know that,

Area of Rhombus = (1/2) x Diagonal1 x Diagonal2 

Putting all the known values, we get

120 = (1/2) x Diagonal 1 x Diagonal 2

Diagonal 2 = 20 m

Area of Quadrilateral Class 8

The area of a quadrilateral depends on its shape and the information available about it. For Class 8, you’re likely dealing with specific types of quadrilaterals like rectangles, squares, parallelograms, trapezoids (or trapeziums, depending on the regional terminology), and kites.

Also Check: Quadrilaterals Class 9 Notes

FAQs on Area of Quadrilateral

What is the area of a quadrilateral?

Area of the quadrilateral is the region inside the boundary of a quadrilateral. It is the total space occupied by a quadrilateral in 2-D plane. It is measured in square units.

How to find the area of a quadrilateral?

Area of quadrilateral is found using formula given below:

Area of Quadrilateral = (1/2) × [(x1y2 + x2y3 + x3y4 + x4y1) – (x2y1 + x3y2 + x4y3 + x1y4)]

where (x1, y1), (x2, y2), (x3, y3), and (x4, y4) are the vertices of a quadrilateral.

What are the different types of quadrilaterals?

Different types of quadrilateral are:

  • Square
  • Rectangle
  • Rhombus
  • Kite
  • Parallelogram
  • Trapezium

Write the uses of quadrilaterals.

Area of quadrilateral is used in the field of architecture, agriculture, design, and navigation also it helps to find distance between two points. It is required to find the area of buildings, park and other complexes.

How to calculate the area of a quadrilateral if one of its diagonals and both perpendiculars from the vertices are given?

When the diagonal(d) and the length of both perpendiculars (h, H) from the vertices are given, then the area of the quadrilateral is calculated by the formula:

Area of quadrilateral = (½) × d × (h + H)

What are the two main types of quadrilaterals?

The two main types of a quadrilateral are

  • Regular Quadrilateral
  • Irregular Quadrilateral

How to find the Area of a Quadrilateral using Heron’s Formula?

To find area of triangle using Heron’s Formula use the following steps:

  • Step 1: Divide the quadrilateral in two triangles by joining its diagonal.
  • Step 2: Find the area of both triangles using Heron’s formula.
  • Step 3: Add both the areas to get the final answer.


Previous Article
Next Article

Similar Reads

What figure is created by joining the midpoints of any quadrilateral?
Geometry is derived from a Greek word that means 'Earth Measurement'. It is a branch of mathematics and is concerned with the properties of space i.e., a visual study of shapes, position of figures, patterns, sizes, etc. Geometry is a subject of countless developments, so there exist many types. They are Euclidean Geometry, Non-Euclidean Geometry,
5 min read
Perimeter of Quadrilateral
Perimeter of a Quadrilateral is the sum of all the sides of a perimeter. Suppose we are given a quadrilateral ABCD with sides AB, BC, CD, and DA then its perimeter is AB + BC + CD + DA. In this article, we will learn about the Perimeter of Quadrilateral Definition and Formulas for Perimeter of various Quadrilateral, Examples, and others in detail.
9 min read
Golden Quadrilateral Superhighway
The Golden Quadrilateral Superhighway refers to the national network which connects the 4 major industrial and cultural cities of India, which included Delhi, Mumbai, Chennai, and Kolkata. As connecting 4 dots forms the shape of a quadrilateral, because of which is known as a quadrilateral. The primary objective of the project was the creation of s
4 min read
What is Cyclic Quadrilateral
Cyclic Quadrilateral is a special type of quadrilateral in which all the vertices of the quadrilateral lie on the circumference of a circle. In other words, if you draw a quadrilateral and then find a circle that passes through all four vertices of that quadrilateral, then that quadrilateral is called a cyclic quadrilateral. Cyclic Quadrilaterals h
9 min read
Quadrilateral Formulas
A quadrilateral is a closed figure and a type of polygon which has four sides or edges, four angles, and four corners or vertices. The word quadrilateral is derived from the Latin words "quad", a variant of four, and "latus", meaning side. It is also called a tetragon, derived from Greek word "tetra", meaning four, and "gon" meaning corner or angle
6 min read
Construction of a Quadrilateral
It is famously said that Geometry is the knowledge that appears to be produced by human beings, yet whose meaning is totally independent of them. Practical geometry is an important branch of geometry that helps us to study the size, positions, shapes as well as dimensions of objects and draw them with available geometrical devices. Geometry helps u
7 min read
Angle Sum Property of a Quadrilateral
Quadrilaterals are encountered everywhere in life, every square rectangle, any shape with four sides is a quadrilateral. We know, three non-collinear points make a triangle. Similarly, four non-collinear points take up a shape that is called a quadrilateral. It has four sides, four angles, and four vertices.  [caption width="800"] [/caption] Both t
9 min read
Tangential Quadrilateral Formula
In mensuration, a tangential quadrilateral is defined as a convex quadrilateral whose all sides are tangent to a single circle within itself. This quadrilateral is also known by the name circumscribable quadrilateral or circumscribing quadrilateral, as it is drawn by encircling or circumscribing its incircles. This circle is known as the quadrilate
4 min read
Quadrilateral - Definition, Properties, Types, Formulas, Examples
Quadrilateral: A quadrilateral is a two-dimensional figure characterized by having four sides, four vertices, and four angles. It can be broadly classified into two categories: concave and convex. Within the convex category, there are several specific types of quadrilaterals, including trapezoids, parallelograms, rectangles, rhombi, and squares. Th
17 min read
Theorem - The sum of opposite angles of a cyclic quadrilateral is 180° | Class 9 Maths
In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The centre of the circle and its radius are called the circumcenter and the circumradius respectively. Other
6 min read