LCM of First n Natural Numbers
Given a number n such that 1 <= N <= 10^6, the Task is to Find the LCM of First n Natural Numbers.
Examples:
Input : n = 5 Output : 60 Input : n = 6 Output : 60 Input : n = 7 Output : 420
We strongly recommend that you click here and practice it, before moving on to the solution.
We have discussed a simple solution in below article.
Smallest number divisible by first n numbers
The above solution works fine for single input. But if we have multiple inputs, it is a good idea to use Sieve of Eratosthenes to store all prime factors. As we know if LCM(a, b) = X so any prime factor of a or b will also be the prime factor of ‘X’.
- Initialize lcm variable with 1
- Generate a Sieve of Eratosthenes (bool vector isPrime) of length 10^6 (ideally must be equal to no. of digits in factorial)
- Now, for each number in bool vector isPrime, if the number is prime (isPrime[i] is true), find the maximum number which is less than the given number and equal to power of the prime.
- Then multiply this number with lcm variable.
- Repeat step 3 and 4 until prime is less than the given number.
Illustration:
For example, if n = 10 8 will be the first number which is equal to 2^3 then 9 which is equal to 3^2 then 5 which is equal to 5^1 then 7 which is equal to 7^1 Finally, we multiply those numbers 8*9*5*7 = 2520
Below is the implementation of the above idea.
C++
// C++ program to find LCM of First N Natural Numbers. #include <bits/stdc++.h> #define MAX 100000 using namespace std; vector< bool > isPrime (MAX, true ); // utility function for sieve of sieve of Eratosthenes void sieve() { for ( int i = 2; i * i <= MAX; i++) { if (isPrime[i] == true ) for ( int j = i*i; j<= MAX; j+=i) isPrime[j] = false ; } } // Function to find LCM of first n Natural Numbers long long LCM( int n) { long long lcm = 1; int i=2; while (i<=n) { if (isPrime[i]){ int pp = i; while (pp * i <= n) pp = pp * i; lcm *= pp; } i++; } return lcm; } // Driver code int main() { // build sieve sieve(); int N = 7; // Function call cout << LCM(N); return 0; } |
Java
// Java program to find LCM of First N Natural Numbers. import java.util.*; class GFG { static int MAX = 100000 ; // array to store all prime less than and equal to 10^6 static ArrayList<Integer> primes = new ArrayList<Integer>(); // utility function for sieve of sieve of Eratosthenes static void sieve() { boolean [] isComposite = new boolean [MAX + 1 ]; for ( int i = 2 ; i * i <= MAX; i++) { if (isComposite[i] == false ) for ( int j = 2 ; j * i <= MAX; j++) isComposite[i * j] = true ; } // Store all prime numbers in vector primes[] for ( int i = 2 ; i <= MAX; i++) if (isComposite[i] == false ) primes.add(i); } // Function to find LCM of first n Natural Numbers static long LCM( int n) { long lcm = 1 ; for ( int i = 0 ; i < primes.size() && primes.get(i) <= n; i++) { // Find the highest power of prime, primes[i] // that is less than or equal to n int pp = primes.get(i); while (pp * primes.get(i) <= n) pp = pp * primes.get(i); // multiply lcm with highest power of prime[i] lcm *= pp; lcm %= 1000000007 ; } return lcm; } // Driver code public static void main(String[] args) { sieve(); int N = 7 ; // Function call System.out.println(LCM(N)); } } // This code is contributed by mits |
Python3
# Python3 program to find LCM of # First N Natural Numbers. MAX = 100000 # array to store all prime less # than and equal to 10^6 primes = [] # utility function for # sieve of Eratosthenes def sieve(): isComposite = [ False ] * ( MAX + 1 ) i = 2 while (i * i < = MAX ): if (isComposite[i] = = False ): j = 2 while (j * i < = MAX ): isComposite[i * j] = True j + = 1 i + = 1 # Store all prime numbers in # vector primes[] for i in range ( 2 , MAX + 1 ): if (isComposite[i] = = False ): primes.append(i) # Function to find LCM of # first n Natural Numbers def LCM(n): lcm = 1 i = 0 while (i < len (primes) and primes[i] < = n): # Find the highest power of prime, # primes[i] that is less than or # equal to n pp = primes[i] while (pp * primes[i] < = n): pp = pp * primes[i] # multiply lcm with highest # power of prime[i] lcm * = pp lcm % = 1000000007 i + = 1 return lcm # Driver code sieve() N = 7 # Function call print (LCM(N)) # This code is contributed by mits |
C#
// C# program to find LCM of First N // Natural Numbers. using System.Collections; using System; class GFG { static int MAX = 100000; // array to store all prime less than // and equal to 10^6 static ArrayList primes = new ArrayList(); // utility function for sieve of // sieve of Eratosthenes static void sieve() { bool [] isComposite = new bool [MAX + 1]; for ( int i = 2; i * i <= MAX; i++) { if (isComposite[i] == false ) for ( int j = 2; j * i <= MAX; j++) isComposite[i * j] = true ; } // Store all prime numbers in vector primes[] for ( int i = 2; i <= MAX; i++) if (isComposite[i] == false ) primes.Add(i); } // Function to find LCM of first // n Natural Numbers static long LCM( int n) { long lcm = 1; for ( int i = 0; i < primes.Count && ( int )primes[i] <= n; i++) { // Find the highest power of prime, primes[i] // that is less than or equal to n int pp = ( int )primes[i]; while (pp * ( int )primes[i] <= n) pp = pp * ( int )primes[i]; // multiply lcm with highest power of prime[i] lcm *= pp; lcm %= 1000000007; } return lcm; } // Driver code public static void Main() { sieve(); int N = 7; // Function call Console.WriteLine(LCM(N)); } } // This code is contributed by mits |
Javascript
<script> // Javascript program to find LCM of First N // Natural Numbers. let MAX = 100000; // array to store all prime less than // and equal to 10^6 let primes = []; // utility function for sieve of // sieve of Eratosthenes function sieve() { let isComposite = new Array(MAX + 1); isComposite.fill( false ); for (let i = 2; i * i <= MAX; i++) { if (isComposite[i] == false ) for (let j = 2; j * i <= MAX; j++) isComposite[i * j] = true ; } // Store all prime numbers in vector primes[] for (let i = 2; i <= MAX; i++) if (isComposite[i] == false ) primes.push(i); } // Function to find LCM of first // n Natural Numbers function LCM(n) { let lcm = 1; for (let i = 0; i < primes.length && primes[i] <= n; i++) { // Find the highest power of prime, primes[i] // that is less than or equal to n let pp = primes[i]; while (pp * primes[i] <= n) pp = pp * primes[i]; // multiply lcm with highest power of prime[i] lcm *= pp; lcm %= 1000000007; } return lcm; } sieve(); let N = 7; // Function call document.write(LCM(N)); // This code is contributed by decode2207. </script> |
PHP
<?php // PHP program to find LCM of // First N Natural Numbers. $MAX = 100000; // array to store all prime less // than and equal to 10^6 $primes = array (); // utility function for // sieve of Eratosthenes function sieve() { global $MAX , $primes ; $isComposite = array_fill (0, $MAX , false); for ( $i = 2; $i * $i <= $MAX ; $i ++) { if ( $isComposite [ $i ] == false) for ( $j = 2; $j * $i <= $MAX ; $j ++) $isComposite [ $i * $j ] = true; } // Store all prime numbers in // vector primes[] for ( $i = 2; $i <= $MAX ; $i ++) if ( $isComposite [ $i ] == false) array_push ( $primes , $i ); } // Function to find LCM of // first n Natural Numbers function LCM( $n ) { global $MAX , $primes ; $lcm = 1; for ( $i = 0; $i < count ( $primes ) && $primes [ $i ] <= $n ; $i ++) { // Find the highest power of prime, // primes[i] that is less than or // equal to n $pp = $primes [ $i ]; while ( $pp * $primes [ $i ] <= $n ) $pp = $pp * $primes [ $i ]; // multiply lcm with highest // power of prime[i] $lcm *= $pp ; $lcm %= 1000000007; } return $lcm ; } // Driver code sieve(); $N = 7; // Function call echo LCM( $N ); // This code is contributed by mits ?> |
420
Time Complexity: O(n2)
Auxiliary Space: O(n)
Another Approach:
The idea is that if the number is less than 3 then return number. If the number is greater than 2 then find LCM of n,n-1
- Lets say x=LCM(n,n-1)
- again x=LCM(x,n-2)
- again x=LCM(x,n-3) …
- .
- .
- again x=LCM(x,1) …
now the result is x.
For finding LCM(a,b) we use a function hcf(a,b) whichwill return HCF of (a,b)
We know that LCM(a,b)= (a*b)/HCF(a,b)
Illustration:
For example, if n = 7 function call lcm(7,6) now lets say a=7 , b=6 Now , b!= 1 Hence a=lcm(7,6) = 42 and b=6-1=5 function call lcm(42,5) a=lcm(42,5) = 210 and b=5-1=4 function call lcm(210,4) a=lcm(210,4) = 420 and b=4-1=3 function call lcm(420,3) a=lcm(420,3) = 420 and b=3-1=2 function call lcm(420,2) a=lcm(420,2) = 420 and b=2-1=1 Now b=1 Hence return a=420
Below is the implementation of the above approach
C++
// C++ program to find LCM of First N Natural Numbers. #include <bits/stdc++.h> using namespace std; // to calculate hcf int hcf( int a, int b) { if (b == 0) return a; return hcf(b, a % b); } int findlcm( int a, int b) { if (b == 1) // lcm(a,b)=(a*b)/hcf(a,b) return a; // assign a=lcm of n,n-1 a = (a * b) / hcf(a, b); // b=b-1 b -= 1; return findlcm(a, b); } // Driver code int main() { int n = 7; if (n < 3) cout << n; // base case else // Function call // pass n,n-1 in function to find LCM of first n natural // number cout << findlcm(n, n - 1); return 0; } // contributed by ajaykr00kj |
Java
// Java program to find LCM of First N Natural Numbers public class Main { // to calculate hcf static int hcf( int a, int b) { if (b == 0 ) return a; return hcf(b, a % b); } static int findlcm( int a, int b) { if (b == 1 ) // lcm(a,b)=(a*b)/hcf(a,b) return a; // assign a=lcm of n,n-1 a = (a * b) / hcf(a, b); // b=b-1 b -= 1 ; return findlcm(a, b); } // Driver code. public static void main(String[] args) { int n = 7 ; if (n < 3 ) System.out.print(n); // base case else // Function call // pass n,n-1 in function to find LCM of first n natural // number System.out.print(findlcm(n, n - 1 )); } } // This code is contributed by divyeshrabadiya07. |
Python3
# Python3 program to find LCM # of First N Natural Numbers. # To calculate hcf def hcf(a, b): if (b = = 0 ): return a return hcf(b, a % b) def findlcm(a, b): if (b = = 1 ): # lcm(a,b)=(a*b)//hcf(a,b) return a # Assign a=lcm of n,n-1 a = (a * b) / / hcf(a, b) # b=b-1 b - = 1 return findlcm(a, b) # Driver code n = 7 if (n < 3 ): print (n) else : # Function call # pass n,n-1 in function # to find LCM of first n # natural number print (findlcm(n, n - 1 )) # This code is contributed by Shubham_Singh |
C#
// C# program to find LCM of First N Natural Numbers. using System; class GFG { // to calculate hcf static int hcf( int a, int b) { if (b == 0) return a; return hcf(b, a % b); } static int findlcm( int a, int b) { if (b == 1) // lcm(a,b)=(a*b)/hcf(a,b) return a; // assign a=lcm of n,n-1 a = (a * b) / hcf(a, b); // b=b-1 b -= 1; return findlcm(a, b); } // Driver code static void Main() { int n = 7; if (n < 3) Console.Write(n); // base case else // Function call // pass n,n-1 in function to find LCM of first n natural // number Console.Write(findlcm(n, n - 1)); } } // This code is contributed by divyesh072019. |
Javascript
<script> // Javascript program to find LCM of First N Natural Numbers. // to calculate hcf function hcf(a, b) { if (b == 0) return a; return hcf(b, a % b); } function findlcm(a,b) { if (b == 1) // lcm(a,b)=(a*b)/hcf(a,b) return a; // assign a=lcm of n,n-1 a = (a * b) / hcf(a, b); // b=b-1 b -= 1; return findlcm(a, b); } let n = 7; if (n < 3) document.write(n); // base case else // Function call // pass n,n-1 in function to find LCM of first n natural // number document.write(findlcm(n, n - 1)); </script> |
420
Time complexity : O(nlog n)
Auxiliary Space: O(1)
This article is contributed by Aarti_Rathi and Kuldeep Singh (kulli_d_coder). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...