Open In App
Related Articles

GCD of two numbers formed by n repeating x and y times

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given three positive integer n, x, y. The task is to print Greatest Common Divisor of numbers formed by n repeating x times and number formed by n repeating y times. 
0 <= n, x, y <= 1000000000.
Examples : 
 

Input : n = 123, x = 2, y = 3.
Output : 123
Number formed are 123123 and 123123123.
Greatest Common Divisor of 123123 and
123123123 is 123.

Input : n = 4, x = 4, y = 6.
Output : 44


 

Recommended Practice


The idea is based on Euclidean algorithm to compute GCD of two number
Let f(n, x) be a function which gives a number n repeated x times. So, we need to find GCD(f(n, x), f(n, y)).
Let n = 123, x = 3, y = 2. 
So, first number A is f(123, 3) = 123123123 and second number B is f(123, 2) = 123123. We know, GCD(A,B) = GCD(A – B, B), using this property we can subtract any multiple of B, say B’ from first A as long as B’ is smaller than A. 
So, A = 123123123 and B’ can be 123123000. On subtracting A will became 123 and B remains same. 
Therefore, A = A – B’ = f(n, x – y). 
So, GCD(f(n, x), f(n, y)) = GCD(f(n, x – y), f(n, y))
We can conclude following, 

GCD(f(n, x), f(n, y)) = f(n, GCD(x, y)). 


Below is the implementation based on this approach:
 

CPP

// C++ program to print Greatest Common Divisor
// of number formed by N repeating x times and
// y times.
#include<bits/stdc++.h>
using namespace std;
  
// Return the Greatest common Divisor of two numbers.
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b%a, a);
}
  
// Prints Greatest Common Divisor of number formed
// by n repeating x times and y times.
void findgcd(int n, int x, int y)
{
    // Finding GCD of x and y.
    int g = gcd(x,y);
  
    // Print n, g times.
    for (int i = 0; i < g; i++)
        cout << n;
}
  
// Driven Program
int main()
{
    int n = 123, x = 5, y = 2;
    findgcd(n, x, y);
    return 0;
}

                    

Java

// Java program to print Greatest Common Divisor
// of number formed by N repeating x times and
// y times
class GFG {
      
    // Return the Greatest common Divisor
    // of two numbers.
    static int gcd(int a, int b) {
          
        if (a == 0)
            return b;
              
        return gcd(b % a, a);
    }
      
    // Prints Greatest Common Divisor of 
    // number formed by n repeating x
    // times and y times.
    static void findgcd(int n, int x, int y) {
          
        // Finding GCD of x and y.
        int g = gcd(x, y);
      
        // Print n, g times.
        for (int i = 0; i < g; i++)
            System.out.print(n);
    }
      
    // Driver code
    public static void main(String[] args) {
          
        int n = 123, x = 5, y = 2;
        findgcd(n, x, y);
    }
}
  
// This code is contributed by Anant Agarwal.

                    

Python3

# Python program to print Greatest
# Common Divisor of number formed 
# by N repeating x times and y times
  
# Return the Greatest common Divisor
# of two numbers.
def gcd(a, b):
      
    if (a == 0):
        return b
      
    return gcd(b % a, a)
  
# Prints Greatest Common Divisor of
# number formed by n repeating x times
# and y times.
def findgcd(n, x, y):
  
    # Finding GCD of x and y.
    g = gcd(x, y)
  
    # Print n, g times.
    for i in range(g):
        print(n)
  
# Driver code
n = 123
x = 5
y = 2
  
findgcd(n, x, y)
  
# This code is contributed by Anant Agarwal.

                    

C#

// C# program to print Greatest Common
// Divisor of number formed by N 
// repeating x times and y times
using System;
  
class GFG {
      
    // Return the Greatest common
    // Divisor of two numbers.
    static int gcd(int a, int b)
    {
          
        if (a == 0)
            return b;
              
        return gcd(b % a, a);
    }
      
    // Prints Greatest Common
    // Divisor of number formed
    // by n repeating x times 
    // and y times.
    static void findgcd(int n,
                      int x, int y)
    {
          
        // Finding GCD of x and y.
        int g = gcd(x, y);
      
        // Print n, g times.
        for (int i = 0; i < g; i++)
            Console.Write(n);
    }
      
    // Driver code
    public static void Main() {
          
        int n = 123, x = 5, y = 2;
          
        findgcd(n, x, y);
    }
}
  
// This code is contributed by
// nitin mittal.

                    

PHP

<?php
// PHP program to print
// Greatest Common Divisor
// of number formed by N 
// repeating x times and y times.
  
// Return the Greatest common
// Divisor of two numbers.
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return gcd($b % $a, $a);
}
  
// Prints Greatest Common Divisor
// of number formed by n repeating 
// x times and y times.
function findgcd($n, $x, $y)
{
    // Finding GCD of x and y.
    $g = gcd($x, $y);
  
    // Print n, g times.
    for ($i = 0; $i < $g; $i++)
        echo($n);
}
  
// Driver Code
$n = 123; $x = 5; $y = 2;
findgcd($n, $x, $y);
  
// This code is contributed by Ajit.
?>

                    

Javascript

<script>
  
// Javascript program to print Greatest Common Divisor 
// of number formed by N repeating x times and 
// y times. 
  
// Return the Greatest common Divisor of two numbers. 
function gcd(a, b) 
    if (a == 0) 
        return b; 
    return gcd(b%a, a); 
  
// Prints Greatest Common Divisor of number formed 
// by n repeating x times and y times. 
function findgcd(n, x, y) 
    // Finding GCD of x and y. 
    let g = gcd(x,y); 
  
    // Print n, g times. 
    for (let i = 0; i < g; i++) 
        document.write(n); 
  
// Driven Program 
  
    let n = 123, x = 5, y = 2; 
    findgcd(n, x, y); 
   
// This is code is contributed by Mayank Tyagi
  
</script>

                    

Output : 

123

Time Complexity: O(log(min(n)) ) 
Auxiliary Space: O(log(min(n))




 



Last Updated : 11 Sep, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads