# Find two numbers with the given LCM and minimum possible difference

Given an integer X, the task is to find two integers A and B such that LCM(A, B) = X and the difference between the A and B is minimum possible.
Examples:

Input: X = 6
Output: 2 3
LCM(2, 3) = 6 and (3 – 2) = 1
which is the minimum possible.
Input X = 7
Output: 1 7

Approach: An approach to solve this problem is to find all the factors of the given number using the approach discussed in this article and then find the pair (A, B) that satisfies the given conditions and has the minimum possible difference.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach` `#include ` `using` `namespace` `std;`   `// Function to return the LCM of a and b` `int` `lcm(``int` `a, ``int` `b)` `{` `    ``return` `(a / __gcd(a, b) * b);` `}`   `// Function to find and print the two numbers` `void` `findNums(``int` `x)` `{`   `    ``int` `ans;`   `    ``// To find the factors` `    ``for` `(``int` `i = 1; i <= ``sqrt``(x); i++) {`   `        ``// To check if i is a factor of x and` `        ``// the minimum possible number` `        ``// satisfying the given conditions` `        ``if` `(x % i == 0 && lcm(i, x / i) == x) {`   `            ``ans = i;` `        ``}` `    ``}` `    ``cout << ans << ``" "` `<< (x / ans);` `}`   `// Driver code` `int` `main()` `{` `    ``int` `x = 12;`   `    ``findNums(x);`   `    ``return` `0;` `}`

## Java

 `// Java implementation of the approach` `class` `GFG` `{`   `    ``// Function to return the LCM of a and b` `    ``static` `int` `lcm(``int` `a, ``int` `b)` `    ``{` `        ``return` `(a / __gcd(a, b) * b);` `    ``}`   `    ``static` `int` `__gcd(``int` `a, ``int` `b) ` `    ``{` `        ``return` `b == ``0` `? a : __gcd(b, a % b);` `    ``}`   `    ``// Function to find and print the two numbers` `    ``static` `void` `findNums(``int` `x)` `    ``{`   `        ``int` `ans = -``1``;`   `        ``// To find the factors` `        ``for` `(``int` `i = ``1``; i <= Math.sqrt(x); i++)` `        ``{`   `            ``// To check if i is a factor of x and` `            ``// the minimum possible number` `            ``// satisfying the given conditions` `            ``if` `(x % i == ``0` `&& lcm(i, x / i) == x)` `            ``{`   `                ``ans = i;` `            ``}` `        ``}` `        ``System.out.print(ans + ``" "` `+ (x / ans));` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `main(String[] args) ` `    ``{` `        ``int` `x = ``12``;`   `        ``findNums(x);` `    ``}` `}`   `// This code is contributed by 29AjayKumar`

## Python3

 `# Python3 implementation of the approach` `from` `math ``import` `gcd as __gcd, sqrt, ceil`   `# Function to return the LCM of a and b` `def` `lcm(a, b):` `    ``return` `(a ``/``/` `__gcd(a, b) ``*` `b)`   `# Function to find and print the two numbers` `def` `findNums(x):`   `    ``ans ``=` `0`   `    ``# To find the factors` `    ``for` `i ``in` `range``(``1``, ceil(sqrt(x))):`   `        ``# To check if i is a factor of x and` `        ``# the minimum possible number` `        ``# satisfying the given conditions` `        ``if` `(x ``%` `i ``=``=` `0` `and` `lcm(i, x ``/``/` `i) ``=``=` `x):`   `            ``ans ``=` `i`   `    ``print``(ans, (x``/``/``ans))`   `# Driver code` `x ``=` `12`   `findNums(x)`   `# This code is contributed by mohit kumar 29`

## C#

 `// C# implementation of the approach` `using` `System;`   `class` `GFG` `{`   `    ``// Function to return the LCM of a and b` `    ``static` `int` `lcm(``int` `a, ``int` `b)` `    ``{` `        ``return` `(a / __gcd(a, b) * b);` `    ``}`   `    ``static` `int` `__gcd(``int` `a, ``int` `b) ` `    ``{` `        ``return` `b == 0 ? a : __gcd(b, a % b);` `    ``}`   `    ``// Function to find and print the two numbers` `    ``static` `void` `findNums(``int` `x)` `    ``{`   `        ``int` `ans = -1;`   `        ``// To find the factors` `        ``for` `(``int` `i = 1; i <= Math.Sqrt(x); i++)` `        ``{`   `            ``// To check if i is a factor of x and` `            ``// the minimum possible number` `            ``// satisfying the given conditions` `            ``if` `(x % i == 0 && lcm(i, x / i) == x)` `            ``{`   `                ``ans = i;` `            ``}` `        ``}` `        ``Console.Write(ans + ``" "` `+ (x / ans));` `    ``}`   `    ``// Driver code` `    ``public` `static` `void` `Main(String[] args) ` `    ``{` `        ``int` `x = 12;`   `        ``findNums(x);` `    ``}` `}`   `// This code is contributed by 29AjayKumar`

## Javascript

 ``

Output:

`3 4`

Time Complexity: O(n1/2 * log(max(a, b)))

Auxiliary Space: O(log(max(a, b)))

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next