# Find the number of pairs such that their gcd is equals to 1

Given an array a of size N. The task is to find the number of pairs such that gcd(a[i], a[j]) where 1 ≤ i < j ≤ N.

Examples:

Input : a[] = {1, 2, 4, 6}
Output : 3
{1, 2}, {1, 4}, {1, 6} are such pairs

Input : a[] = {1, 2, 3, 4, 5, 6}
Output : 11

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach :
The answer is to sum of μ(X) * C(D(X), 3) overall integer X. Where, μ(X) is Mobius function, C(N, K) is the selection of K things from N and D(X) is the number of integers in the given sequence that are divisible by X.

The correctness of the solution follows from the fact that we can do an inclusion-exclusion principle solution and to show that it is, in fact, equal to our answer. That means that we will add to the answer the number of pairs that are divisible by some intermediate (in the IEP) product D if D is formed by multiplication of even number of prime numbers and subtract this number of pairs otherwise.

So, we get:

• 1 for addition, because that is Möbius function for square-free numbers with even number of prime divisors.
• -1 for subtraction, that is Mobius function for square-free numbers with an odd number of prime divisors.
• 0 for square-free numbers. By the definition, they can’t occur in our IEP solution.

Below is the implementation of the above approach :

## C++

 `// CPP program to find the number of pairs ` `// such that gcd equals to 1 ` `#include ` `using` `namespace` `std; ` ` `  `#define N 100050 ` ` `  `int` `lpf[N], mobius[N]; ` ` `  `// Function to calculate least ` `// prime factor of each number ` `void` `least_prime_factor() ` `{ ` `    ``for` `(``int` `i = 2; i < N; i++) ` ` `  `        ``// If it is a prime number ` `        ``if` `(!lpf[i]) ` ` `  `            ``for` `(``int` `j = i; j < N; j += i) ` ` `  `                ``// For all multiples which are not ` `                ``// visited yet. ` `                ``if` `(!lpf[j]) ` `                    ``lpf[j] = i; ` `} ` ` `  `// Function to find the value of Mobius function ` `// for all the numbers from 1 to n ` `void` `Mobius() ` `{ ` `    ``for` `(``int` `i = 1; i < N; i++) { ` ` `  `        ``// If number is one ` `        ``if` `(i == 1) ` `            ``mobius[i] = 1; ` `        ``else` `{ ` ` `  `            ``// If number has a squared prime factor ` `            ``if` `(lpf[i / lpf[i]] == lpf[i]) ` `                ``mobius[i] = 0; ` ` `  `            ``// Multiply -1 with the previous number ` `            ``else` `                ``mobius[i] = -1 * mobius[i / lpf[i]]; ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the number of pairs ` `// such that gcd equals to 1 ` `int` `gcd_pairs(``int` `a[], ``int` `n) ` `{ ` `    ``// To store maximum number ` `    ``int` `maxi = 0; ` ` `  `    ``// To store frequency of each number ` `    ``int` `fre[N] = { 0 }; ` ` `  `    ``// Find frequency and maximum number ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``fre[a[i]]++; ` `        ``maxi = max(a[i], maxi); ` `    ``} ` ` `  `    ``least_prime_factor(); ` `    ``Mobius(); ` ` `  `    ``// To store number of pairs with gcd equals to 1 ` `    ``int` `ans = 0; ` ` `  `    ``// Traverse through the all possible elements ` `    ``for` `(``int` `i = 1; i <= maxi; i++) { ` `        ``if` `(!mobius[i]) ` `            ``continue``; ` ` `  `        ``int` `temp = 0; ` `        ``for` `(``int` `j = i; j <= maxi; j += i) ` `            ``temp += fre[j]; ` ` `  `        ``ans += temp * (temp - 1) / 2 * mobius[i]; ` `    ``} ` ` `  `    ``// Return the number of pairs ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 1, 2, 3, 4, 5, 6 }; ` ` `  `    ``int` `n = ``sizeof``(a) / ``sizeof``(a[0]); ` ` `  `    ``// Function call ` `    ``cout << gcd_pairs(a, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find the number of pairs ` `// such that gcd equals to 1 ` `class` `GFG ` `{ ` ` `  `static` `int` `N = ``100050``; ` ` `  `static` `int` `[]lpf = ``new` `int``[N]; ` `static` `int` `[]mobius = ``new` `int``[N]; ` ` `  `// Function to calculate least ` `// prime factor of each number ` `static` `void` `least_prime_factor() ` `{ ` `    ``for` `(``int` `i = ``2``; i < N; i++) ` ` `  `        ``// If it is a prime number ` `        ``if` `(lpf[i] == ``0``) ` ` `  `            ``for` `(``int` `j = i; j < N; j += i) ` ` `  `                ``// For all multiples which are not ` `                ``// visited yet. ` `                ``if` `(lpf[j] == ``0``) ` `                    ``lpf[j] = i; ` `} ` ` `  `// Function to find the value of Mobius function ` `// for all the numbers from 1 to n ` `static` `void` `Mobius() ` `{ ` `    ``for` `(``int` `i = ``1``; i < N; i++)  ` `    ``{ ` ` `  `        ``// If number is one ` `        ``if` `(i == ``1``) ` `            ``mobius[i] = ``1``; ` `        ``else` `        ``{ ` ` `  `            ``// If number has a squared prime factor ` `            ``if` `(lpf[i / lpf[i]] == lpf[i]) ` `                ``mobius[i] = ``0``; ` ` `  `            ``// Multiply -1 with the previous number ` `            ``else` `                ``mobius[i] = -``1` `* mobius[i / lpf[i]]; ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the number of pairs ` `// such that gcd equals to 1 ` `static` `int` `gcd_pairs(``int` `a[], ``int` `n) ` `{ ` `    ``// To store maximum number ` `    ``int` `maxi = ``0``; ` ` `  `    ``// To store frequency of each number ` `    ``int` `[]fre = ``new` `int``[N]; ` ` `  `    ``// Find frequency and maximum number ` `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` `        ``fre[a[i]]++; ` `        ``maxi = Math.max(a[i], maxi); ` `    ``} ` ` `  `    ``least_prime_factor(); ` `    ``Mobius(); ` ` `  `    ``// To store number of pairs with gcd equals to 1 ` `    ``int` `ans = ``0``; ` ` `  `    ``// Traverse through the all possible elements ` `    ``for` `(``int` `i = ``1``; i <= maxi; i++) ` `    ``{ ` `        ``if` `(mobius[i] == ``0``) ` `            ``continue``; ` ` `  `        ``int` `temp = ``0``; ` `        ``for` `(``int` `j = i; j <= maxi; j += i) ` `            ``temp += fre[j]; ` ` `  `        ``ans += temp * (temp - ``1``) / ``2` `* mobius[i]; ` `    ``} ` ` `  `    ``// Return the number of pairs ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `a[] = { ``1``, ``2``, ``3``, ``4``, ``5``, ``6` `}; ` ` `  `    ``int` `n = a.length; ` ` `  `    ``// Function call ` `    ``System.out.print(gcd_pairs(a, n)); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

## Python3

 `# Python3 program to find the number of pairs ` `# such that gcd equals to 1 ` `N ``=` `100050` ` `  `lpf ``=` `[``0` `for` `i ``in` `range``(N)] ` `mobius ``=` `[``0` `for` `i ``in` `range``(N)] ` ` `  `# Function to calculate least ` `# prime factor of each number ` `def` `least_prime_factor(): ` ` `  `    ``for` `i ``in` `range``(``2``, N): ` ` `  `        ``# If it is a prime number ` `        ``if` `(lpf[i] ``=``=` `0``): ` ` `  `            ``for` `j ``in` `range``(i, N, i): ` ` `  `                ``# For all multiples which are not ` `                ``# visited yet. ` `                ``if` `(lpf[j] ``=``=` `0``): ` `                    ``lpf[j] ``=` `i ` ` `  `# Function to find the value of Mobius function ` `# for all the numbers from 1 to n ` `def` `Mobius(): ` ` `  `    ``for` `i ``in` `range``(``1``, N): ` ` `  `        ``# If number is one ` `        ``if` `(i ``=``=` `1``): ` `            ``mobius[i] ``=` `1` `        ``else``: ` ` `  `            ``# If number has a squared prime factor ` `            ``if` `(lpf[ (i ``/``/` `lpf[i]) ] ``=``=` `lpf[i]): ` `                ``mobius[i] ``=` `0` ` `  `            ``# Multiply -1 with the previous number ` `            ``else``: ` `                ``mobius[i] ``=` `-``1` `*` `mobius[i ``/``/` `lpf[i]] ` ` `  `# Function to find the number of pairs ` `# such that gcd equals to 1 ` `def` `gcd_pairs(a, n): ` ` `  `    ``# To store maximum number ` `    ``maxi ``=` `0` ` `  `    ``# To store frequency of each number ` `    ``fre ``=` `[``0` `for` `i ``in` `range``(N)] ` ` `  `    ``# Find frequency and maximum number ` `    ``for` `i ``in` `range``(n): ` `        ``fre[a[i]] ``+``=` `1` `        ``maxi ``=` `max``(a[i], maxi) ` ` `  `    ``least_prime_factor() ` `    ``Mobius() ` ` `  `    ``# To store number of pairs with gcd equals to 1 ` `    ``ans ``=` `0` ` `  `    ``# Traverse through the all possible elements ` `    ``for` `i ``in` `range``(``1``, maxi ``+` `1``): ` `        ``if` `(mobius[i] ``=``=` `0``): ` `            ``continue` ` `  `        ``temp ``=` `0` `        ``for` `j ``in` `range``(i, maxi ``+` `1``, i): ` `            ``temp ``+``=` `fre[j] ` ` `  `        ``ans ``+``=` `temp ``*` `(temp ``-` `1``) ``/``/` `2` `*` `mobius[i] ` ` `  `    ``# Return the number of pairs ` `    ``return` `ans ` ` `  `# Driver code ` `a ``=` `[``1``, ``2``, ``3``, ``4``, ``5``, ``6``] ` ` `  `n ``=` `len``(a) ` ` `  `# Function call ` `print``(gcd_pairs(a, n)) ` ` `  `# This code is contributed by Mohit Kumar `

## C#

 `// C# program to find the number of pairs ` `// such that gcd equals to 1 ` `using` `System; ` ` `  `class` `GFG ` `{ ` `static` `int` `N = 100050; ` ` `  `static` `int` `[]lpf = ``new` `int``[N]; ` `static` `int` `[]mobius = ``new` `int``[N]; ` ` `  `// Function to calculate least ` `// prime factor of each number ` `static` `void` `least_prime_factor() ` `{ ` `    ``for` `(``int` `i = 2; i < N; i++) ` ` `  `        ``// If it is a prime number ` `        ``if` `(lpf[i] == 0) ` ` `  `            ``for` `(``int` `j = i; j < N; j += i) ` ` `  `                ``// For all multiples which are not ` `                ``// visited yet. ` `                ``if` `(lpf[j] == 0) ` `                    ``lpf[j] = i; ` `} ` ` `  `// Function to find the value of Mobius function ` `// for all the numbers from 1 to n ` `static` `void` `Mobius() ` `{ ` `    ``for` `(``int` `i = 1; i < N; i++)  ` `    ``{ ` ` `  `        ``// If number is one ` `        ``if` `(i == 1) ` `            ``mobius[i] = 1; ` `        ``else` `        ``{ ` ` `  `            ``// If number has a squared prime factor ` `            ``if` `(lpf[i / lpf[i]] == lpf[i]) ` `                ``mobius[i] = 0; ` ` `  `            ``// Multiply -1 with the previous number ` `            ``else` `                ``mobius[i] = -1 * mobius[i / lpf[i]]; ` `        ``} ` `    ``} ` `} ` ` `  `// Function to find the number of pairs ` `// such that gcd equals to 1 ` `static` `int` `gcd_pairs(``int` `[]a, ``int` `n) ` `{ ` `    ``// To store maximum number ` `    ``int` `maxi = 0; ` ` `  `    ``// To store frequency of each number ` `    ``int` `[]fre = ``new` `int``[N]; ` ` `  `    ``// Find frequency and maximum number ` `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` `        ``fre[a[i]]++; ` `        ``maxi = Math.Max(a[i], maxi); ` `    ``} ` ` `  `    ``least_prime_factor(); ` `    ``Mobius(); ` ` `  `    ``// To store number of pairs with gcd equals to 1 ` `    ``int` `ans = 0; ` ` `  `    ``// Traverse through the all possible elements ` `    ``for` `(``int` `i = 1; i <= maxi; i++) ` `    ``{ ` `        ``if` `(mobius[i] == 0) ` `            ``continue``; ` ` `  `        ``int` `temp = 0; ` `        ``for` `(``int` `j = i; j <= maxi; j += i) ` `            ``temp += fre[j]; ` ` `  `        ``ans += temp * (temp - 1) / 2 * mobius[i]; ` `    ``} ` ` `  `    ``// Return the number of pairs ` `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main (String[] args) ` `{ ` `    ``int` `[]a = { 1, 2, 3, 4, 5, 6 }; ` ` `  `    ``int` `n = a.Length; ` ` `  `    ``// Function call ` `    ``Console.Write(gcd_pairs(a, n)); ` `} ` `} ` `     `  `// This code is contributed by Rajput-Ji `

Output:

```11
```

My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.