Fermat’s little theorem

Fermat’s little theorem states that if p is a prime number, then for any integer a, the number a p – a is an integer multiple of p.

Here p is a prime number
ap ≡ a (mod p).

Special Case: If a is not divisible by p, Fermat’s little theorem is equivalent to the statement that a p-1-1 is an integer multiple of p.

ap-1 ≡ 1 (mod p)
OR
an-1 % p = 1
Here a is not divisible by p.


Take an Example How Fermat’s little theorem works

Examples:



 P = an integer Prime number   
 a = an integer which is not multiple of P  
 Let a = 2 and P = 17 
 
 According to Fermat's little theorem 
  2 17 - 1     ≡ 1 mod(17)
 we got  65536 % 17 ≡ 1   
 that mean (65536-1) is an multiple of 17 

Use of Fermat’s little theorem

If we know m is prime, then we can also use Fermats’s little theorem to find the inverse.

am-1 ≡ 1 (mod m)
If we multiply both sides with a-1, we get

a-1 ≡ a m-2 (mod m)
Below is the Implementation of above

C++

// C++ program to find modular inverse of a
// under modulo m using Fermat's little theorem.
// This program works only if m is prime.
#include <bits/stdc++.h>
using namespace std;
  
// To compute x raised to power y under modulo m
int power(int x, unsigned int y, unsigned int m);
  
// Function to find modular inverse of a under modulo m
// Assumption: m is prime
void modInverse(int a, int m)
{
    if (__gcd(a, m) != 1)
        cout << "Inverse doesn't exist";
  
    else {
  
        // If a and m are relatively prime, then
        // modulo inverse is a^(m-2) mode m
        cout << "Modular multiplicative inverse is "
             << power(a, m - 2, m);
    }
}
  
// To compute x^y under modulo m
int power(int x, unsigned int y, unsigned int m)
{
    if (y == 0)
        return 1;
    int p = power(x, y / 2, m) % m;
    p = (p * p) % m;
  
    return (y % 2 == 0) ? p : (x * p) % m;
}
  
// Driver Program
int main()
{
    int a = 3, m = 11;
    modInverse(a, m);
    return 0;
}

Java

// Java program to find modular 
// inverse of a under modulo m 
// using Fermat's little theorem. 
// This program works only if m is prime.
  
class GFG
{
    static int __gcd(int a, int b)
    {
      
        if(b == 0
        {
            return a;
        }
        else 
        {
            return __gcd(b, a % b);
        }
    }
      
    // To compute x^y under modulo m
    static int power(int x,int y,int m)
    {
        if (y == 0)
            return 1;
        int p = power(x, y / 2, m) % m;
        p = (p * p) % m;
      
        return (y % 2 == 0) ? p : (x * p) % m;
    }
      
    // Function to find modular 
    // inverse of a under modulo m
    // Assumption: m is prime
    static void modInverse(int a, int m)
    {
        if (__gcd(a, m) != 1)
            System.out.print("Inverse doesn't exist");
      
        else {
      
            // If a and m are relatively prime, then
            // modulo inverse is a^(m-2) mode m
            System.out.print("Modular multiplicative inverse is "
                                            +power(a, m - 2, m));
        }
    }
      
      
    // Driver code
    public static void main (String[] args) 
    {
        int a = 3, m = 11;
        modInverse(a, m);
    }
}
  
// This code is contributed by Anant Agarwal.

Python3

# Python program to find
# modular inverse of a
# under modulo m using
# Fermat's little theorem.
# This program works
# only if m is prime.
  
def __gcd(a,b):
  
    if(b == 0):
        return a
    else:
        return __gcd(b, a % b)
      
# To compute x^y under modulo m
def power(x,y,m):
  
    if (y == 0):
        return 1
    p = power(x, y // 2, m) % m
    p = (p * p) % m
   
    return p if(y % 2 == 0) else  (x * p) % m
  
# Function to find modular
# inverse of a under modulo m
# Assumption: m is prime
def modInverse(a,m):
  
    if (__gcd(a, m) != 1):
        print("Inverse doesn't exist")
   
    else:
   
        # If a and m are relatively prime, then
        # modulo inverse is a^(m-2) mode m
        print("Modular multiplicative inverse is ",
             power(a, m - 2, m))
  
# Driver code
  
a = 3
m = 11
modInverse(a, m)
  
# This code is contributed
# by Anant Agarwal.

C#

// C# program to find modular 
// inverse of a under modulo m 
// using Fermat's little theorem. 
// This program works only if m is prime.
using System;
  
class GFG
{
    static int __gcd(int a, int b)
    {
      
        if(b == 0) 
        {
            return a;
        }
        else
        {
            return __gcd(b, a % b);
        }
    }
      
    // To compute x^y under modulo m
    static int power(int x, int y, int m)
    {
        if (y == 0)
            return 1;
        int p = power(x, y / 2, m) % m;
        p = (p * p) % m;
      
        return (y % 2 == 0) ? p : (x * p) % m;
    }
      
    // Function to find modular 
    // inverse of a under modulo m
    // Assumption: m is prime
    static void modInverse(int a, int m)
    {
        if (__gcd(a, m) != 1)
            Console.WriteLine("Modular multiplicative inverse is "
                                            +power(a, m - 2, m));
      
        else {
      
            // If a and m are relatively prime, then
            // modulo inverse is a^(m-2) mode m
            Console.WriteLine("Modular multiplicative inverse is "
                                            +power(a, m - 2, m));
        }
    }
      
      
    // Driver code
    public static void Main () 
    {
        int a = 3, m = 11;
        modInverse(a, m);
    }
}
  
// This code is contributed by vt_m.

PHP

<?php
// PHP program to find modular inverse of a
// under modulo m using Fermat's little theorem.
// This program works only if m is prime.
  
  
// To compute x raised to
// power y under modulo m
// Recursive function to 
// return gcd of a and b
function __gcd($a, $b)
{
      
    // Everything divides 0 
    if ($a == 0 || $b == 0)
    return 0;
  
    // base case
    if ($a == $b)
        return $a;
  
    // a is greater
    if ($a > $b)
        return __gcd($a-$b, $b);
    return __gcd($a, $b-$a);
}
  
// Function to find modular
// inverse of a under modulo m
// Assumption: m is prime
function modInverse($a, $m)
{
    if (__gcd($a, $m) != 1)
        echo "Inverse doesn't exist";
  
    else 
    {
  
        // If a and m are relatively
        // prime, then modulo inverse
        // is a^(m-2) mode m
        echo "Modular multiplicative inverse is ",
                             power($a,$m - 2, $m);
    }
}
  
// To compute x^y under modulo m
function power($x, $y, $m)
{
    if ($y == 0)
        return 1;
    $p = power($x,$y / 2, $m) % $m;
    $p = ($p * $p) % $m;
  
    return ($y % 2 == 0) ? $p : ($x * $p) % $m;
}
  
    // Driver Code
    $a = 3; $m = 11;
    modInverse($a, $m);
      
// This code is contributed by anuj__67.
?>


Output :

Modular multiplicative inverse is 4

Some Article Based on Fermat’s little theorem



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.


Improved By : vt_m




Recommended Posts:



3 Average Difficulty : 3/5.0
Based on 2 vote(s)






User Actions