Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum squares to evenly cut a rectangle

  • Difficulty Level : Easy
  • Last Updated : 19 Jul, 2021

Given a rectangular sheet of length l and width w. we need to divide this sheet into square sheets such that the number of square sheets should be as minimum as possible.
Examples:
 

Input :l= 4 w=6 
Output :6 
We can form squares with side of 1 unit, But the number of squares will be 24, this is not minimum. If we make square with side of 2, then we have 6 squares. and this is our required answer. 
And also we can’t make square with side 3, if we select 3 as square side, then whole sheet can’t be converted into squares of equal length. 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

img



Input :l=3 w=5 
Output :15

 

Optimal length of the side of a square is equal to GCD of two numbers
 

C++




// CPP program to find minimum number of
// squares to make a given rectangle.
#include <bits/stdc++.h>
using namespace std;
 
int countRectangles(int l, int w)
{
    // if we take gcd(l, w), this
    // will be largest possible
    // side for square, hence minimum
    // number of square.
    int squareSide = __gcd(l, w);
 
    // Number of squares.
    return (l * w) / (squareSide * squareSide);
}
 
// Driver code
int main()
{
    int l = 4, w = 6;
    cout << countRectangles(l, w) << endl;
    return 0;
}

Java




// Java program to find minimum number of
// squares to make a given rectangle.
 
class GFG{
static int __gcd(int a, int b) {
   if (b==0) return a;
   return __gcd(b,a%b);
}
static int countRectangles(int l, int w)
{
    // if we take gcd(l, w), this
    // will be largest possible
    // side for square, hence minimum
    // number of square.
    int squareSide = __gcd(l, w);
 
    // Number of squares.
    return (l * w) / (squareSide * squareSide);
}
 
// Driver code
public static void main(String[] args)
{
    int l = 4, w = 6;
    System.out.println(countRectangles(l, w));
}
}
// This code is contributed by mits

Python3




# Python3 code to find minimum number of
# squares to make a given rectangle.
 
import math
 
def countRectangles(l, w):
 
    # if we take gcd(l, w), this
    # will be largest possible
    # side for square, hence minimum
    # number of square.
    squareSide = math.gcd(l,w)
     
    # Number of squares.
    return (l*w)/(squareSide*squareSide)
 
# Driver Code
         
if __name__ == '__main__':
    l = 4
    w = 6
    ans = countRectangles(l, w)
    print (int(ans))
 
# this code is contributed by
# SURENDRA_GANGWAR

C#




// C# program to find minimum number of
// squares to make a given rectangle.
 
class GFG{
static int __gcd(int a, int b) {
if (b==0) return a;
return __gcd(b,a%b);
}
static int countRectangles(int l, int w)
{
    // if we take gcd(l, w), this
    // will be largest possible
    // side for square, hence minimum
    // number of square.
    int squareSide = __gcd(l, w);
 
    // Number of squares.
    return (l * w) / (squareSide * squareSide);
}
 
// Driver code
public static void Main()
{
    int l = 4, w = 6;
    System.Console.WriteLine(countRectangles(l, w));
}
}
// This code is contributed by mits

PHP




<?php
// PHP program to find minimum number
// of squares to make a given rectangle.
 
function gcd($a, $b)
{
    return $b ? gcd($b, $a % $b) : $a;
}
 
function countRectangles($l, $w)
{
    // if we take gcd(l, w), this
    // will be largest possible
    // side for square, hence minimum
    // number of square.
    $squareSide = gcd($l, $w);
 
    // Number of squares.
    return ($l * $w) / ($squareSide *
                        $squareSide);
}
 
// Driver code
$l = 4;
$w = 6;
echo countRectangles($l, $w) . "\n";
 
// This code is contributed
// by ChitraNayal
?>

Javascript




<script>
 
// Javascript program to find minimum number of
// squares to make a given rectangle.
 
function __gcd(a, b) {
    if (b==0) return a;
    return __gcd(b,a%b);
}
 
function countRectangles(l, w)
{
    // if we take gcd(l, w), this
    // will be largest possible
    // side for square, hence minimum
    // number of square.
    let squareSide = __gcd(l, w);
 
    // Number of squares.
    return parseInt((l * w) / (squareSide * squareSide));
}
 
// Driver code
    let l = 4, w = 6;
    document.write(countRectangles(l, w));
 
</script>
Output: 
6

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :