Open In App
Related Articles

Maximum GCD of all subarrays of length at least 2

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array arr[] of N numbers. The task is to find the maximum GCD of all subarrays of size greater than 1. 
Examples: 
 

Input: arr[] = { 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 } 
Output:
Explanation: 
GCD of the subarray {18, 9, 9} is maximum which is 9.
Input: arr[] = { 4, 8, 12, 16, 20, 24 } 
Output:
Explanation: 
GCD of the subarray {4, 18, 12, 16, 20, 24} is maximum which is 4. 
 


 


Naive Approach: The idea is to generate all the subarray of size greater than 1 and then find the maximum of gcd of all subarray formed. 
Time complexity: O(N2) 
Efficient Approach: Let GCD of two numbers be g. Now if we take gcd of g with any third number say c then, gcd will decrease or remain same, but it will never increase. 
The idea is to find gcd of every consecutive pair in the arr[] and the maximum of gcd of all the pairs formed is the desired result.
Below is the implementation of the above approach: 
 

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find GCD
int gcd(int a, int b)
{
    if (b == 0) {
        return a;
    }
    return gcd(b, a % b);
}
 
void findMaxGCD(int arr[], int n)
{
 
    // To store the maximum GCD
    int maxGCD = 0;
 
    // Traverse the array
    for (int i = 0; i < n - 1; i++) {
 
        // Find GCD of the consecutive
        // element
        int val = gcd(arr[i], arr[i + 1]);
 
        // If calculated GCD > maxGCD
        // then update it
        if (val > maxGCD) {
            maxGCD = val;
        }
    }
 
    // Print the maximum GCD
    cout << maxGCD << endl;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 18, 9, 9, 5,
                  15, 8, 7, 6, 9 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    findMaxGCD(arr, n);
    return 0;
}

                    

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to find GCD
static int gcd(int a, int b)
{
    if (b == 0)
    {
        return a;
    }
    return gcd(b, a % b);
}
 
static void findMaxGCD(int arr[], int n)
{
 
    // To store the maximum GCD
    int maxGCD = 0;
 
    // Traverse the array
    for(int i = 0; i < n - 1; i++)
    {
         
       // Find GCD of the consecutive
       // element
       int val = gcd(arr[i], arr[i + 1]);
        
       // If calculated GCD > maxGCD
       // then update it
       if (val > maxGCD)
       {
           maxGCD = val;
       }
    }
 
    // Print the maximum GCD
    System.out.print(maxGCD + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 18, 9, 9, 5,
                  15, 8, 7, 6, 9 };
    int n = arr.length;
 
    // Function call
    findMaxGCD(arr, n);
}
}
 
// This code is contributed by amal kumar choubey

                    

Python3

# Python3 program for the above approach
 
# Function to find GCD
def gcd(a, b):
     
    if (b == 0):
        return a;
    return gcd(b, a % b);
 
def findMaxGCD(arr, n):
     
    # To store the maximum GCD
    maxGCD = 0;
 
    # Traverse the array
    for i in range(0, n - 1):
 
        # Find GCD of the consecutive
        # element
        val = gcd(arr[i], arr[i + 1]);
 
        # If calculated GCD > maxGCD
        # then update it
        if (val > maxGCD):
            maxGCD = val;
 
    # Print the maximum GCD
    print(maxGCD);
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 3, 18, 9, 9, 5,
            15, 8, 7, 6, 9 ];
    n = len(arr);
 
    # Function call
    findMaxGCD(arr, n);
 
# This code is contributed by 29AjayKumar

                    

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Function to find GCD
static int gcd(int a, int b)
{
    if (b == 0)
    {
        return a;
    }
    return gcd(b, a % b);
}
 
static void findMaxGCD(int []arr, int n)
{
 
    // To store the maximum GCD
    int maxGCD = 0;
 
    // Traverse the array
    for(int i = 0; i < n - 1; i++)
    {
         
        // Find GCD of the consecutive
        // element
        int val = gcd(arr[i], arr[i + 1]);
             
        // If calculated GCD > maxGCD
        // then update it
        if (val > maxGCD)
        {
            maxGCD = val;
        }
    }
 
    // Print the maximum GCD
    Console.Write(maxGCD + "\n");
}
 
// Driver Code
public static void Main()
{
    int []arr = { 3, 18, 9, 9, 5,
                 15, 8, 7, 6, 9 };
    int n = arr.Length;
 
    // Function call
    findMaxGCD(arr, n);
}
}
 
// This code is contributed by Code_Mech

                    

Javascript

<script>
 
// Javascript program for the above approach
 
// Function to find GCD
function gcd(a, b)
{
    if (b == 0) {
        return a;
    }
    return gcd(b, a % b);
}
 
function findMaxGCD(arr, n)
{
 
    // To store the maximum GCD
    let maxGCD = 0;
 
    // Traverse the array
    for (let i = 0; i < n - 1; i++) {
 
        // Find GCD of the consecutive
        // element
        let val = gcd(arr[i], arr[i + 1]);
 
        // If calculated GCD > maxGCD
        // then update it
        if (val > maxGCD) {
            maxGCD = val;
        }
    }
 
    // Print the maximum GCD
    document.write(maxGCD + "<br>");
}
 
// Driver Code
  
    let arr = [ 3, 18, 9, 9, 5,
                15, 8, 7, 6, 9 ];
 
    let n = arr.length;
 
    // Function Call
    findMaxGCD(arr, n);
 
// This code is contributed by Mayank Tyagi
 
</script>

                    

Output: 
9

 

Time Complexity: O(N), where N is the length of the array.

Auxiliary Space: O(log(max(a, b)))
 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!


Last Updated : 21 Nov, 2021
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads
Complete Tutorials