Sum of all numbers formed having 4 atmost X times, 5 atmost Y times and 6 atmost Z times

Given three integers X, Y and Z, the task is to find the sum of all the numbers formed having 4 atmost X times, 5 atmost Y times and 6 atmost Z times, under mod 10^9+7.

Examples:

Input: X = 1, Y = 1, Z = 1 
Output: 3675
Explanation:
4 + 5 + 6 + 45 + 54 + 56 
+ 65 + 46 + 64 + 456 + 465 
+ 546 + 564 + 645 + 654 = 3675

Input: X = 4, Y = 5, Z = 6
Output: 129422134

Approach:

  • As this problem has the property of sub-problems overlapping and optimal sub-structure, hence dynamic programming can be used to solve it.
  • The numbers having exact i 4s, j 5s and k 6s for all i < x, j < y, j < z are required to get the required sum.
  • Therefore the dp array exactnum[i][j][k] will store the exact count of numbers having exact i 4s, j 5s and k 6s.
  • If exactnum[i – 1][j][k], exactnum[i][j – 1][k] and exactnum[i][j][k – 1] are already known, then it can be observed that the sum of these is the required answer, except in the case when exactnum[i – 1][j][k], exactnum[i][j – 1][k] or exactnum[i][j][k – 1] doesn’t exist. In that case, just skip it.
  • exactsum[i][j][k] stores the sum of exact number having i 4's, j 5's and k 6's in the same way as
    exactsum[i][j][k] = 10 * (exactsum[i - 1][j][k] 
                            + exactsum[i][j - 1][k] 
                            + exactsum[i][j][k - 1]) 
                      + 4 * exactnum[i - 1][j][k] 
                      + 5 * exactnum[i][j - 1][k] 
                      + 6 * exactnum[i][j][k - 1] 
    

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of all numbers
// formed having 4 atmost X times, 5 atmost
// Y times and 6 atmost Z times
#include <bits/stdc++.h>
using namespace std;
  
const int N = 101;
const int mod = 1e9 + 7;
  
// exactsum[i][j][k] stores the sum of
// all the numbers having exact
// i 4's, j 5's and k 6's
int exactsum[N][N][N];
  
// exactnum[i][j][k] stores numbers
// of numbers having exact
// i 4's, j 5's and k 6's
int exactnum[N][N][N];
  
// Utility function to calculate the
// sum for x 4's, y 5's and z 6's
int getSum(int x, int y, int z)
{
    int ans = 0;
    exactnum[0][0][0] = 1;
    for (int i = 0; i <= x; ++i) {
        for (int j = 0; j <= y; ++j) {
            for (int k = 0; k <= z; ++k) {
  
                // Computing exactsum[i][j][k]
                // as explained above
                if (i > 0) {
                    exactsum[i][j][k]
                        += (exactsum[i - 1][j][k] * 10
                            + 4 * exactnum[i - 1][j][k])
                           % mod;
                    exactnum[i][j][k]
                        += exactnum[i - 1][j][k] % mod;
                }
                if (j > 0) {
                    exactsum[i][j][k]
                        += (exactsum[i][j - 1][k] * 10
                            + 5 * exactnum[i][j - 1][k])
                           % mod;
                    exactnum[i][j][k]
                        += exactnum[i][j - 1][k] % mod;
                }
                if (k > 0) {
                    exactsum[i][j][k]
                        += (exactsum[i][j][k - 1] * 10
                            + 6 * exactnum[i][j][k - 1])
                           % mod;
                    exactnum[i][j][k]
                        += exactnum[i][j][k - 1] % mod;
                }
  
                ans += exactsum[i][j][k] % mod;
                ans %= mod;
            }
        }
    }
    return ans;
}
  
// Driver code
int main()
{
    int x = 1, y = 1, z = 1;
  
    cout << (getSum(x, y, z) % mod);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find sum of all numbers 
// formed having 4 atmost X times, 5 atmost 
// Y times and 6 atmost Z times 
      
class GFG 
{
      
    static int N = 101
    static int mod = (int)1e9 + 7
      
    // exactsum[i][j][k] stores the sum of 
    // all the numbers having exact 
    // i 4's, j 5's and k 6's 
    static int exactsum[][][] = new int[N][N][N]; 
      
    // exactnum[i][j][k] stores numbers 
    // of numbers having exact 
    // i 4's, j 5's and k 6's 
    static int exactnum[][][] = new int[N][N][N]; 
      
    // Utility function to calculate the 
    // sum for x 4's, y 5's and z 6's 
    static int getSum(int x, int y, int z) 
    
        int ans = 0
        exactnum[0][0][0] = 1
        for (int i = 0; i <= x; ++i)
        
            for (int j = 0; j <= y; ++j) 
            
                for (int k = 0; k <= z; ++k) 
                
      
                    // Computing exactsum[i][j][k] 
                    // as explained above 
                    if (i > 0)
                    
                        exactsum[i][j][k] 
                        += (exactsum[i - 1][j][k] * 10 
                        + 4 * exactnum[i - 1][j][k]) % mod; 
                          
                        exactnum[i][j][k] 
                        += exactnum[i - 1][j][k] % mod; 
                    
                    if (j > 0)
                    
                        exactsum[i][j][k] 
                        += (exactsum[i][j - 1][k] * 10 
                        + 5 * exactnum[i][j - 1][k]) % mod; 
                          
                        exactnum[i][j][k] 
                        += exactnum[i][j - 1][k] % mod; 
                    
                    if (k > 0)
                    
                        exactsum[i][j][k] 
                        += (exactsum[i][j][k - 1] * 10 
                        + 6 * exactnum[i][j][k - 1]) % mod; 
                          
                        exactnum[i][j][k] 
                        += exactnum[i][j][k - 1] % mod; 
                    
      
                    ans += exactsum[i][j][k] % mod; 
                    ans %= mod; 
                
            
        
        return ans; 
    
      
    // Driver code 
    public static void main (String[] args)
    
        int x = 1, y = 1, z = 1
      
        System.out.println(getSum(x, y, z) % mod); 
      
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find sum of all numbers 
# formed having 4 atmost X times, 5 atmost 
# Y times and 6 atmost Z times 
import numpy as np
  
N = 101
mod = int(1e9) + 7
  
# exactsum[i][j][k] stores the sum of 
# all the numbers having exact 
# i 4's, j 5's and k 6's 
exactsum = np.zeros((N, N, N)); 
  
# exactnum[i][j][k] stores numbers 
# of numbers having exact 
# i 4's, j 5's and k 6's 
exactnum = np.zeros((N, N, N)); 
  
# Utility function to calculate the 
# sum for x 4's, y 5's and z 6's 
def getSum(x, y, z) : 
    ans = 0
    exactnum[0][0][0] = 1
    for i in range(x + 1) :
        for j in range(y + 1) :
            for k in range(z + 1) :
  
                # Computing exactsum[i][j][k] 
                # as explained above 
                if (i > 0) :
                    exactsum[i][j][k] += (exactsum[i - 1][j][k] * 10 +
                                            4 * exactnum[i - 1][j][k]) % mod;
                                              
                    exactnum[i][j][k] += exactnum[i - 1][j][k] % mod; 
                  
                if (j > 0) :
                    exactsum[i][j][k] += (exactsum[i][j - 1][k] * 10+
                                        5 * exactnum[i][j - 1][k]) % mod; 
                                          
                    exactnum[i][j][k] += exactnum[i][j - 1][k] % mod; 
                  
                if (k > 0) :
                    exactsum[i][j][k] += (exactsum[i][j][k - 1] * 10
                                            + 6 * exactnum[i][j][k - 1]) % mod; 
                    exactnum[i][j][k] += exactnum[i][j][k - 1] % mod; 
  
                ans += exactsum[i][j][k] % mod; 
                ans %= mod; 
                  
    return ans; 
  
# Driver code 
if __name__ == "__main__"
  
    x = 1; y = 1; z = 1
  
    print((getSum(x, y, z) % mod)); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of all numbers 
// formed having 4 atmost X times, 5 atmost 
// Y times and 6 atmost Z times 
using System;
  
class GFG 
{
      
    static int N = 101; 
    static int mod = (int)1e9 + 7; 
      
    // exactsum[i][j][k] stores the sum of 
    // all the numbers having exact 
    // i 4's, j 5's and k 6's 
    static int [,,]exactsum = new int[N, N, N]; 
      
    // exactnum[i][j][k] stores numbers 
    // of numbers having exact 
    // i 4's, j 5's and k 6's 
    static int [,,]exactnum= new int[N, N, N]; 
      
    // Utility function to calculate the 
    // sum for x 4's, y 5's and z 6's 
    static int getSum(int x, int y, int z) 
    
        int ans = 0; 
        exactnum[0, 0, 0] = 1; 
        for (int i = 0; i <= x; ++i)
        
            for (int j = 0; j <= y; ++j) 
            
                for (int k = 0; k <= z; ++k) 
                
      
                    // Computing exactsum[i, j, k] 
                    // as explained above 
                    if (i > 0)
                    
                        exactsum[i, j, k] 
                        += (exactsum[i - 1, j, k] * 10 
                        + 4 * exactnum[i - 1, j, k]) % mod; 
                          
                        exactnum[i, j, k] 
                        += exactnum[i - 1, j, k] % mod; 
                    
                    if (j > 0)
                    
                        exactsum[i, j, k] 
                        += (exactsum[i, j - 1, k] * 10 
                        + 5 * exactnum[i, j - 1, k]) % mod; 
                          
                        exactnum[i, j, k] 
                        += exactnum[i, j - 1, k] % mod; 
                    
                    if (k > 0)
                    
                        exactsum[i, j, k] 
                        += (exactsum[i, j, k - 1] * 10 
                        + 6 * exactnum[i, j, k - 1]) % mod; 
                          
                        exactnum[i, j, k] 
                        += exactnum[i, j, k - 1] % mod; 
                    
      
                    ans += exactsum[i, j, k] % mod; 
                    ans %= mod; 
                
            
        
        return ans; 
    
      
    // Driver code 
    public static void Main ()
    
        int x = 1, y = 1, z = 1; 
      
        Console.WriteLine(getSum(x, y, z) % mod); 
      
    
}
      
// This code is contributed by AnkitRai01

chevron_right


Output:

3675

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Competitive Programmer, Full Stack Developer, Technical Content Writer, Machine Learner

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01