# Mathematics | Propositional Equivalences

**Introduction**

Two logical expressions are said to be equivalent if they have the same truth value in all cases. Sometimes this fact helps in proving a mathematical result by replacing one expression with another equivalent expression, without changing the truth value of the original compound proposition.

**Types of propositions based on Truth values**

There are three types of propositions when classified according to their truth values

1. Tautology - A proposition which is always true, is called a tautology. 2. Contradiction - A proposition which is always false, is called a contradiction. 3. Contingency - A proposition that is neither a tautology nor a contradiction is called a contingency.

Example,

1. is a tautology. 2. is a contradiction. 3. is a contingency.

**Definition of Logical Equivalence**

Formally,

Two propositions and are said to be logically equivalent if is a **Tautology**. The notation is used to denote that and are logically equivalent.

One way of proving that two propositions are logically equivalent is to use a truth table. The truth table must be identical for all combinations for the given propositions to be equivalent. But this method is not always feasible since the propositions can be increasingly complex both in the number of propositional variables used and size of the expression.

In this case, there needs to be a better way to prove that the two given propositions are logically equivalent. That better way is to construct a mathematical proof which uses already established logical equivalences to construct additional more useful logical equivalences.

Some basic established logical equivalences are tabulated below-

The above Logical Equivalences used only conjunction, disjunction and negation. Other logical Equivalences using conditionals and bi-conditionals are-

Example,

Show that .

Considering LHS,

Another example,

Show that .

Considering LHS,

The above examples could easily be solved using a truth table. But this can only be done for a proposition having a small number of propositional variables. When the number of variables grows the truth table method becomes impractical.

For a proposition having 20 variables, rows have to be evaluated in the truth table. This may be easy to do with a computer, but even a computer would fail in computing the truth table of a proposition having 1000 variables.

**GATE CS Corner Questions**

Practicing the following questions will help you test your knowledge. All questions have been asked in GATE in previous years or in GATE Mock Tests. It is highly recommended that you practice them.

1. GATE CS 2008, Question 33

2. GATE CS 2014 Set-2, Question 63

3. GATE CS 2006, Question 27

4. GATE CS 2015 Set-3, Question 65

References,

Logical Equivalence – Wikipedia

Discrete Mathematics and its Applications, by Kenneth H Rosen

This article is contributed by **Chirag Manwani**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

## Recommended Posts:

- Mathematics | Introduction to Propositional Logic | Set 1
- Mathematics | Introduction to Propositional Logic | Set 2
- Mathematics | Probability
- Mathematics | Generalized PnC Set 2
- Mathematics | Generalized PnC Set 1
- Mathematics | Indefinite Integrals
- Mathematics | Introduction to Proofs
- Mathematics | Law of total probability
- Mathematics | Power Set and its Properties
- Mathematics | Generating Functions - Set 2
- Mathematics | PnC and Binomial Coefficients
- Mathematics | Algebraic Structure
- Mathematics | Random Variables
- Mathematics | Lagrange's Mean Value Theorem
- Mathematics | Rolle's Mean Value Theorem