Smallest number divisible by first n numbers

Given a number n find the smallest number evenly divisible by each number 1 to n.

Examples:

Input : n = 4
Output : 12
Explanation : 12 is the smallest numbers divisible
              by all numbers from 1 to 4

Input : n = 10
Output : 2520

Input :  n = 20
Output : 232792560


If you observe carefully the ans must be the LCM of the numbers 1 to n.
To find LCM of numbers from 1 to n –

  1. Initialize ans = 1.
  2. Iterate over all the numbers from i = 1 to i = n.
    At the i’th iteration ans = LCM(1, 2, …….., i). This can be done easily as LCM(1, 2, …., i) = LCM(ans, i).
    Thus at i’th iteration we just have to do –

    ans = LCM(ans, i) 
             = ans * i / gcd(ans, i) [Using the below property,
                                     a*b = gcd(a,b) * lcm(a,b)]

Note : In C++ code, the answer quickly exceeds the integer limit, even the long long limit.

Below is the implementation of the logic.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find smallest number evenly divisible by 
// all numbers 1 to n
#include<bits/stdc++.h>
using namespace std;
  
// Function returns the lcm of first n numbers
long long lcm(long long n)
{
    long long ans = 1;    
    for (long long i = 1; i <= n; i++)
        ans = (ans * i)/(__gcd(ans, i));
    return ans;
}
  
// Driver program to test the above function
int main() 
{
    long long n = 20;
    cout << lcm(n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find smallest number evenly divisible by 
// all numbers 1 to n
  
 class GFG{
  
static long gcd(long a, long b)
{
   if(a%b != 0
      return gcd(b,a%b);
   else 
      return b;
}
  
// Function returns the lcm of first n numbers
static long lcm(long n)
{
    long ans = 1;    
    for (long i = 1; i <= n; i++)
        ans = (ans * i)/(gcd(ans, i));
    return ans;
}
   
// Driver program to test the above function
public static void main(String []args) 
{
    long n = 20;
    System.out.println(lcm(n));
  
}
}

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C#  program to find smallest number
// evenly divisible by 
// all numbers 1 to n 
using System;
  
public class GFG{
    static long gcd(long a, long b) 
if(a%b != 0) 
    return gcd(b,a%b); 
else
    return b; 
  
// Function returns the lcm of first n numbers 
static long lcm(long n) 
    long ans = 1;    
    for (long i = 1; i <= n; i++) 
        ans = (ans * i)/(gcd(ans, i)); 
    return ans; 
  
// Driver program to test the above function 
    static public void Main (){
        long n = 20; 
        Console.WriteLine(lcm(n)); 
    }
//This code is contributed by akt_mit   
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find the smallest number evenly 
# divisible by all number 1 to n
import fractions
  
# Returns the lcm of first n numbers
def lcm(n):
    ans = 1    
    for i in range(1, n + 1):
        ans = (ans * i)/fractions.gcd(ans, i)        
    return ans
  
# main
n = 20
print lcm(n)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// Note: This code is not working on GFG-IDE 
// because gmp libraries are not supported
  
// PHP program to find smallest number 
// evenly divisible by all numbers 1 to n
  
// Function returns the lcm 
// of first n numbers
function lcm($n)
{
    $ans = 1; 
    for ($i = 1; $i <= $n; $i++)
        $ans = ($ans * $i) / (gmp_gcd(strval(ans), 
                                      strval(i)));
    return $ans;
}
  
// Driver Code
$n = 20;
echo lcm($n);
  
// This code is contributed by mits
?>

chevron_right



Output :

232792560

The above solution works fine for single input. But if we have multiple inputs, it is a good idea to use Sieve of Eratosthenes to store all prime factors. Please refer below article for Sieve based approach.
LCM of First n Natural Numbers

This article is contributed by Ayush Khanduri. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.



My Personal Notes arrow_drop_up

Improved By : Mithun Kumar, Ita_c, jit_t