Open In App

Find triplet (A, B, C) such that LCM(A, B) + LCM(A, C) + LCM(B, C) equals N

Last Updated : 22 Jan, 2024
Improve
Improve
Like Article
Like
Save
Share
Report

Given an integer N. Find a triplet let say {A, B, C} such that LCM(A, B) + LCM(B, C) + LCM(A, C) = N. If no possible triplets are there, output -1 instead.

Examples:

Input: N = 1
Output: -1
Explanation: No possible triplets are there.

Input: N = 15
Output: 5 5 5
Explanation: LCM(5, 5) + LCM(5, 1) + LCM(5, 1) = 5 + 5 + 5 = 15.

Observations:

Observation 1: If N is divisible by 3, the triplet can be {N/3, N/3, N/3}. For example, if N is 12, the triplet is {4, 4, 4}. Since, LCM(4, 4) + LCM(4, 4) + LCM(4, 4) = (4 + 4 + 4) = 12.

Observation 2: If (N <= 2), we will have our answer as -1. Because the minimum value of expression LCM(A, B) + LCM(B, C) + LCM(A, C) can be 3.

Observation 3: For value of N, which are perfect power of 2, no solution exists for them.
Proof:

  • Let’s take 3 integers A, B and C and consider GCD(A, B, C) = G.
  • Now, if we calculate the pairwise GCD for every pair of numbers:
    • GCD(A, B) = G * X
    • GCD(A, C) = G * Y
    • GCD(B, C) = G * Z, where X, Y and Z will be pairwise co-prime.
  • Further, it can be seen that
    • A = G * X * Y * C1
    • B = G * X * Z * C2
    • C = G * Y * Z * C3, where C1, C2 and C3 are also co-prime.
  • Then, LCM(A, B) + LCM(B, C) + LCM(C, A) = G * X * Y * Z * (C1 * C2 + C2 * C3 + C3 * C1), as we know that C1, C2 and C3 are pairwise coprime, therefore at most one of C1, C2 and C3 can be even. Therefore, LCM (A, B) + LCM (B, C) + LCM (C, A) will have an odd factor, which is greater than 1. So, it concludes, it is not possible to be a power of 2 equivalent to thus equation.

Observation 4: If N is odd, the triplet can always be {1, 1, (N - 1)/2}. For example, if N is 17, the triplet is {1, 1, 8}. Since, {LCM (1, 1) + LCM (1, 8) + LCM (1, 8)} = (1 + 8 + 8) = 17.

Final Observation: Now we are only left with elements that not divisible by 3 and are even for example 4, 8, 10…. and so on. For numbers that are not divisible by 3, are even, and are not powers of 2, we can find the first set bit (Least Significant Bit) in their binary representation and calculate triplet as {1, (1<<bit), (N-(1<<bit))/2}. For example, for N = 10 (binary representation 1010), the valid triplet is {1, 2, 4}.

Step-by-step algorithm:

  • If (N <= 2)
    • Output -1.
  • If (N is divisible by 3)
    • Output triplet as {N/3, N/3, N/3}.
  • If (N is odd)
    • Output triplet as {1, 1, N/2}.
  • Else
    • If (N is power of 2)
      • Output -1
    • Else
      • Find LSB (Least Significant bit of N).
      • Output triplet as {1, (1<<bit), (N-(1<<bit))/2}.

Below is the implementation of the approach:

C++




#include <iostream>
 
using namespace std;
 
// Function to print triplet
void Find_triplet(int N)
{
    // If N is less than or equal to 2 then
    // no possible triplet is there
    if (N <= 2)
    {
        cout << -1 << endl;
        return;
    }
 
    // If N is a multiple of 3
    if (N % 3 == 0)
    {
        cout << " " << N / 3 << " " << N / 3
             << " " << (N / 3) << endl;
        return;
    }
 
    // If N is odd
    if (N % 2 == 1)
    {
        cout << " " << 1 << " " << 1 << " "
             << (N / 2) << endl;
        return;
    }
 
    else
    {
        if ((N & (N - 1)) == 0)
        {
            cout << -1 << endl;
        }
        else
        {
            // Variable to store Least significant bit
            long long LSB = 2;
            while ((LSB & N) == 0)
            {
                LSB *= 2;
            }
            cout << 1 << " " << LSB << " "
                 << (N - LSB) / 2 << endl;
        }
    }
}
 
// Driver Function
int main()
{
    // Input
    int N = 15;
 
    // Function call
    Find_triplet(N);
 
    return 0;
}


Java




// Java code to implement the approach
 
import java.util.*;
// Driver Class
public class Main {
    // Driver Function
    public static void main(String[] args)
    {
        // Input
        int N = 15;
 
        // Function_call
        Find_triplet(N);
    }
 
    // Function to print triplet
    public static void Find_triplet(int N)
    {
 
        // If N is less than or equal to 2 then
        // no possible triplet is there
        if (N <= 2) {
            System.out.println(-1);
            return;
        }
 
        // If N is a multiple of 3
        if (N % 3 == 0) {
            System.out.println(" " + N / 3 + " " + N / 3
                            + " " + (N / 3));
            return;
        }
 
        // If N is odd
        if (N % 2 == 1) {
            System.out.println(" " + 1 + " " + 1 + " "
                            + (N / 2));
            return;
        }
 
        else {
            if ((N & (N - 1)) == 0) {
                System.out.println(-1);
            }
            else {
                // Variable to store Least significant bit
                long LSB = 2;
                while ((LSB & N) == 0) {
                    LSB *= 2;
                }
                System.out.println(1 + " " + LSB + " "
                                + (N - LSB) / 2);
            }
        }
    }
}


Python3




def find_triplet(N):
    # If N is less than or equal to 2, no possible triplet exists
    if N <= 2:
        print(-1)
        return
 
    # If N is a multiple of 3, print a triplet with equal values
    if N % 3 == 0:
        print(f" {N // 3} {N // 3} {N // 3}")
        return
 
    # If N is odd, print a triplet with one 1 and two equal values
    if N % 2 == 1:
        print(f" {1} {1} {N // 2}")
        return
    else:
        # If N is not a power of 2, find the Least Significant Bit (LSB)
        if N & (N - 1) == 0:
            print(-1)
        else:
            LSB = 2
            while LSB & N == 0:
                LSB *= 2  # Shift LSB to the left until it represents the LSB of N
            # Print a triplet where the first element is 1, the second element is the LSB,
            # and the third element is half of the difference between N and LSB
            print(f" {1} {LSB} {(N - LSB) // 2}")
 
# Driver code
if __name__ == "__main__":
    N = 15
    find_triplet(N)


C#




using System;
 
class GFG
{
    // Function to print triplet
    static void FindTriplet(int N)
    {
        // If N is less than or equal to 2 then
        // no possible triplet is there
        if (N <= 2)
        {
            Console.WriteLine(-1);
            return;
        }
 
        // If N is a multiple of 3
        if (N % 3 == 0)
        {
            Console.WriteLine($" {N / 3} {N / 3} {N / 3}");
            return;
        }
 
        // If N is odd
        if (N % 2 == 1)
        {
            Console.WriteLine($" 1 1 {N / 2}");
            return;
        }
 
        else
        {
            if ((N & (N - 1)) == 0)
            {
                Console.WriteLine(-1);
            }
            else
            {
                // Variable to store Least significant bit
                long LSB = 2;
                while ((LSB & N) == 0)
                {
                    LSB *= 2;
                }
                Console.WriteLine($" 1 {LSB} {(N - LSB) / 2}");
            }
        }
    }
 
    // Driver Function
    static void Main()
    {
        // Input
        int N = 15;
 
        // Function call
        FindTriplet(N);
    }
}


Javascript




<script>
 
// Function to print triplet
function findTriplet(N) {
    // If N is less than or equal to 2 then
    // no possible triplet is there
    if (N <= 2) {
        console.log(-1);
        return;
    }
 
    // If N is a multiple of 3
    if (N % 3 === 0) {
        console.log(` ${N / 3} ${N / 3} ${N / 3}`);
        return;
    }
 
    // If N is odd
    if (N % 2 === 1) {
        console.log(` 1 1 ${N / 2}`);
        return;
    } else {
        if ((N & (N - 1)) === 0) {
            console.log(-1);
        } else {
            // Variable to store Least significant bit
            let LSB = 2;
            while ((LSB & N) === 0) {
                LSB *= 2;
            }
            console.log(` 1 ${LSB} ${(N - LSB) / 2}`);
        }
    }
}
 
// Driver Function
// Input
const N = 15;
 
// Function call
findTriplet(N);
 
 
</script>


Output

 5 5 5

Time Complexity: O(LogN), As we are finding least significant bit of N.
Auxiliary Space: O(1)



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads