Related Articles

# Find Square Root under Modulo p | Set 1 (When p is in form of 4*i + 3)

• Difficulty Level : Medium
• Last Updated : 12 Apr, 2021

Given a number ‘n’ and a prime ‘p’, find square root of n under modulo p if it exists. It may be given that p is in the form for 4*i + 3 (OR p % 4 = 3) where i is an integer. Examples of such primes are 7, 11, 19, 23, 31, … etc,
Examples:

```Input:  n = 2, p = 7
Output: 3 or 4
3 and 4 both are square roots of 2 under modulo
7 because (3*3) % 7 = 2 and (4*4) % 7 = 2

Input:  n = 2, p = 5
Output: Square root doesn't exist```

Naive Solution : Try all numbers from 2 to p-1. And for every number x, check if x is square root of n under modulo p.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

## C++

 `// A Simple C++ program to find square root under modulo p``// when p is 7, 11, 19, 23, 31, ... etc,``#include ``using` `namespace` `std;` `// Returns true if square root of n under modulo p exists``void` `squareRoot(``int` `n, ``int` `p)``{``    ``n = n % p;` `    ``// One by one check all numbers from 2 to p-1``    ``for` `(``int` `x = 2; x < p; x++) {``        ``if` `((x * x) % p == n) {``            ``cout << ``"Square root is "` `<< x;``            ``return``;``        ``}``    ``}``    ``cout << ``"Square root doesn't exist"``;``}` `// Driver program to test``int` `main()``{``    ``int` `p = 7;``    ``int` `n = 2;``    ``squareRoot(n, p);``    ``return` `0;``}`

## Java

 `// A Simple Java program to find square``// root under modulo p when p is 7,``// 11, 19, 23, 31, ... etc,``import` `java .io.*;` `class` `GFG {` `    ``// Returns true if square root of n``    ``// under modulo p exists``    ``static` `void` `squareRoot(``int` `n, ``int` `p)``    ``{``        ``n = n % p;``    ` `        ``// One by one check all numbers``        ``// from 2 to p-1``        ``for` `(``int` `x = ``2``; x < p; x++) {``            ``if` `((x * x) % p == n) {``                ``System.out.println(``"Square "``                    ``+ ``"root is "` `+ x);``                ``return``;``            ``}``        ``}``        ``System.out.println(``"Square root "``                ``+ ``"doesn't exist"``);``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `p = ``7``;``        ``int` `n = ``2``;``        ``squareRoot(n, p);``    ``}``}` `// This code is contributed by Anuj_67`

## Python3

 `# A Simple Python program to find square``# root under modulo p when p is 7, 11,``# 19, 23, 31, ... etc,` `# Returns true if square root of n under``# modulo p exists``def` `squareRoot(n, p):` `    ``n ``=` `n ``%` `p``    ` `    ``# One by one check all numbers from``    ``# 2 to p-1``    ``for` `x ``in` `range` `(``2``, p):``        ``if` `((x ``*` `x) ``%` `p ``=``=` `n) :``            ``print``( ``"Square root is "``, x)``            ``return` `    ``print``( ``"Square root doesn't exist"``)` `# Driver program to test``p ``=` `7``n ``=` `2``squareRoot(n, p)` `# This code is Contributed by Anuj_67`

## C#

 `// A Simple C# program to find square``// root under modulo p when p is 7,``// 11, 19, 23, 31, ... etc,``using` `System;` `class` `GFG {` `    ``// Returns true if square root of n``    ``// under modulo p exists``    ``static` `void` `squareRoot(``int` `n, ``int` `p)``    ``{``        ``n = n % p;``    ` `        ``// One by one check all numbers``        ``// from 2 to p-1``        ``for` `(``int` `x = 2; x < p; x++) {``            ``if` `((x * x) % p == n) {``                ``Console.Write(``"Square "``                     ``+ ``"root is "` `+ x);``                ``return``;``            ``}``        ``}``        ``Console.Write(``"Square root "``                   ``+ ``"doesn't exist"``);``    ``}``    ` `    ``// Driver Code``    ``static` `void` `Main()``    ``{``        ``int` `p = 7;``        ``int` `n = 2;``        ``squareRoot(n, p);``    ``}``}` `// This code is contributed by Anuj_67`

## PHP

 ``

## Javascript

 ``

Output:

`Square root is 3`

Time Complexity of this solution is O(p)
Direct Method : If p is in the form of 4*i + 3, then there exist a Quick way of finding square root.

```If n is in the form 4*i + 3 with i >= 1 (OR p % 4 = 3)
And
If Square root of n exists, then it must be
±n(p + 1)/4```

Below is the implementation of above idea :

## C++

 `// An efficient C++ program to find square root under``// modulo p when p is 7, 11, 19, 23, 31, ... etc.``#include ``using` `namespace` `std;` `// Utility function to do modular exponentiation.``// It returns (x^y) % p.``int` `power(``int` `x, ``int` `y, ``int` `p)``{``    ``int` `res = 1; ``// Initialize result``    ``x = x % p; ``// Update x if it is more than or``    ``// equal to p` `    ``while` `(y > 0)``    ``{``      ` `        ``// If y is odd, multiply x with result``        ``if` `(y & 1)``            ``res = (res * x) % p;` `        ``// y must be even now``        ``y = y >> 1; ``// y = y/2``        ``x = (x * x) % p;``    ``}``    ``return` `res;``}` `// Returns true if square root of n under modulo p exists``// Assumption: p is of the form 3*i + 4 where i >= 1``void` `squareRoot(``int` `n, ``int` `p)``{``    ``if` `(p % 4 != 3) {``        ``cout << ``"Invalid Input"``;``        ``return``;``    ``}` `    ``// Try "+(n^((p + 1)/4))"``    ``n = n % p;``    ``int` `x = power(n, (p + 1) / 4, p);``    ``if` `((x * x) % p == n) {``        ``cout << ``"Square root is "` `<< x;``        ``return``;``    ``}` `    ``// Try "-(n ^ ((p + 1)/4))"``    ``x = p - x;``    ``if` `((x * x) % p == n) {``        ``cout << ``"Square root is "` `<< x;``        ``return``;``    ``}` `    ``// If none of the above two work, then``    ``// square root doesn't exist``    ``cout << ``"Square root doesn't exist "``;``}` `// Driver program to test``int` `main()``{``    ``int` `p = 7;``    ``int` `n = 2;``    ``squareRoot(n, p);``    ``return` `0;``}`

## Java

 `// An efficient Java program to find square root under``// modulo p when p is 7, 11, 19, 23, 31, ... etc.``public` `class` `GFG {`  `// Utility function to do modular exponentiation.``// It returns (x^y) % p.``static` `int` `power(``int` `x, ``int` `y, ``int` `p)``{``    ``int` `res = ``1``; ``// Initialize result``    ``x = x % p; ``// Update x if it is more than or``    ``// equal to p` `    ``while` `(y > ``0``) {``        ``// If y is odd, multiply x with result``        ``if` `(y %``2``== ``1``)``            ``res = (res * x) % p;` `        ``// y must be even now``        ``y = y >> ``1``; ``// y = y/2``        ``x = (x * x) % p;``    ``}``    ``return` `res;``}` `// Returns true if square root of n under modulo p exists``// Assumption: p is of the form 3*i + 4 where i >= 1``static` `void` `squareRoot(``int` `n, ``int` `p)``{``    ``if` `(p % ``4` `!= ``3``) {``        ``System.out.print(``"Invalid Input"``);``        ``return``;``    ``}` `    ``// Try "+(n^((p + 1)/4))"``    ``n = n % p;``    ``int` `x = power(n, (p + ``1``) / ``4``, p);``    ``if` `((x * x) % p == n) {``        ``System.out.print(``"Square root is "` `+ x);``        ``return``;``    ``}` `    ``// Try "-(n ^ ((p + 1)/4))"``    ``x = p - x;``    ``if` `((x * x) % p == n) {``        ``System.out.print(``"Square root is "` `+ x);``        ``return``;``    ``}` `    ``// If none of the above two work, then``    ``// square root doesn't exist``    ``System.out.print(``"Square root doesn't exist "``);``}` `// Driver program to test``   ``static` `public` `void` `main(String[] args) {``       ``int` `p = ``7``;``    ``int` `n = ``2``;``    ``squareRoot(n, p);``    ``}``}`

## Python3

 `# An efficient python3 program to find square root``# under modulo p when p is 7, 11, 19, 23, 31, ... etc.` `# Utility function to do modular exponentiation.``# It returns (x^y) % p.``def` `power(x, y, p) :` `    ``res ``=` `1` `# Initialize result``    ``x ``=` `x ``%` `p ``# Update x if it is more``              ``# than or equal to p` `    ``while` `(y > ``0``):``        ` `        ``# If y is odd, multiply x with result``        ``if` `(y & ``1``):``            ``res ``=` `(res ``*` `x) ``%` `p` `        ``# y must be even now``        ``y ``=` `y >> ``1` `# y = y/2``        ``x ``=` `(x ``*` `x) ``%` `p` `    ``return` `res` `# Returns true if square root of n under``# modulo p exists. Assumption: p is of the``# form 3*i + 4 where i >= 1``def` `squareRoot(n, p):` `    ``if` `(p ``%` `4` `!``=` `3``) :``        ``print``( ``"Invalid Input"` `)``        ``return`  `    ``# Try "+(n^((p + 1)/4))"``    ``n ``=` `n ``%` `p``    ``x ``=` `power(n, (p ``+` `1``) ``/``/` `4``, p)``    ``if` `((x ``*` `x) ``%` `p ``=``=` `n):``        ``print``( ``"Square root is "``, x)``        ``return` `    ``# Try "-(n ^ ((p + 1)/4))"``    ``x ``=` `p ``-` `x``    ``if` `((x ``*` `x) ``%` `p ``=``=` `n):``        ``print``( ``"Square root is "``, x )``        ``return` `    ``# If none of the above two work, then``    ``# square root doesn't exist``    ``print``( ``"Square root doesn't exist "` `)` `# Driver Code``p ``=` `7``n ``=` `2``squareRoot(n, p)` `# This code is contributed by``# Shubham Singh(SHUBHAMSINGH10)`

## C#

 `// An efficient C# program to find square root under``// modulo p when p is 7, 11, 19, 23, 31, ... etc.` `using` `System;``public` `class` `GFG {`` ` `// Utility function to do modular exponentiation.``// It returns (x^y) % p.``static` `int` `power(``int` `x, ``int` `y, ``int` `p)``{``    ``int` `res = 1; ``// Initialize result``    ``x = x % p; ``// Update x if it is more than or``    ``// equal to p`` ` `    ``while` `(y > 0) {``        ``// If y is odd, multiply x with result``        ``if` `(y %2 == 1)``            ``res = (res * x) % p;`` ` `        ``// y must be even now``        ``y = y >> 1; ``// y = y/2``        ``x = (x * x) % p;``    ``}``    ``return` `res;``}`` ` `// Returns true if square root of n under modulo p exists``// Assumption: p is of the form 3*i + 4 where i >= 1``static` `void` `squareRoot(``int` `n, ``int` `p)``{``    ``if` `(p % 4 != 3) {``        ``Console.Write(``"Invalid Input"``);``        ``return``;``    ``}`` ` `    ``// Try "+(n^((p + 1)/4))"``    ``n = n % p;``    ``int` `x = power(n, (p + 1) / 4, p);``    ``if` `((x * x) % p == n) {``        ``Console.Write(``"Square root is "` `+ x);``        ``return``;``    ``}`` ` `    ``// Try "-(n ^ ((p + 1)/4))"``    ``x = p - x;``    ``if` `((x * x) % p == n) {``        ``Console.Write(``"Square root is "` `+ x);``        ``return``;``    ``}`` ` `    ``// If none of the above two work, then``    ``// square root doesn't exist``    ``Console.Write(``"Square root doesn't exist "``);``}`` ` `// Driver program to test``   ``static` `public` `void` `Main() {``       ``int` `p = 7;``    ``int` `n = 2;``    ``squareRoot(n, p);``    ``}``}``// This code is contributed by Ita_c.`

## PHP

 ` 0)``    ``{``        ` `        ``// If y is odd, multiply``        ``// x with result``        ``if` `(``\$y` `& 1)``            ``\$res` `= (``\$res` `* ``\$x``) % ``\$p``;` `        ``// y must be even now``        ``// y = y/2``        ``\$y` `= ``\$y` `>> 1;``        ``\$x` `= (``\$x` `* ``\$x``) % ``\$p``;``    ``}``    ``return` `\$res``;``}` `// Returns true if square root``// of n under modulo p exists``// Assumption: p is of the``// form 3*i + 4 where i >= 1``function` `squareRoot(``\$n``, ``\$p``)``{``    ``if` `(``\$p` `% 4 != 3)``    ``{``        ``echo` `"Invalid Input"``;``        ``return``;``    ``}` `    ``// Try "+(n^((p + 1)/4))"``    ``\$n` `= ``\$n` `% ``\$p``;``    ``\$x` `= power(``\$n``, (``\$p` `+ 1) / 4, ``\$p``);``    ``if` `((``\$x` `* ``\$x``) % ``\$p` `== ``\$n``)``    ``{``        ``echo` `"Square root is "``, ``\$x``;``        ``return``;``    ``}` `    ``// Try "-(n ^ ((p + 1)/4))"``    ``\$x` `= ``\$p` `- ``\$x``;``    ``if` `((``\$x` `* ``\$x``) % ``\$p` `== ``\$n``)``    ``{``        ``echo` `"Square root is "``, ``\$x``;``        ``return``;``    ``}` `    ``// If none of the above``    ``// two work, then square``    ``// root doesn't exist``    ``echo` `"Square root doesn't exist "``;``}` `    ``// Driver Code``    ``\$p` `= 7;``    ``\$n` `= 2;``    ``squareRoot(``\$n``, ``\$p``);` `// This code is contributed by ajit``?>`

## Javascript

 ``

Output:

`Square root is 4`

Time Complexity of this solution is O(Log p)
How does this work?
We have discussed Euler’s Criterion in the previous post.

```As per Euler's criterion, if square root exists, then
following condition is true
n(p-1)/2 % p = 1

Multiplying both sides with n, we get
n(p+1)/2 % p = n % p  ------ (1)

Let x be the modulo square root. We can write,
(x * x) ≡ n mod p
(x * x) ≡ n(p+1)/2  [Using (1) given above]
(x * x) ≡ n(2i + 2) [Replacing n = 4*i + 3]
x ≡ ±n(i + 1)  [Taking Square root of both sides]
x ≡ ±n(p + 1)/4 [Putting 4*i + 3 = p or i = (p-3)/4]```

We will soon be discussing methods when p is not in above form.