# Detect cycle in an undirected graph using BFS

Given an undirected graph, how to check if there is a cycle in the graph? For example, the following graph has a cycle 1-0-2-1. ## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

We have discussed cycle detection for directed graph. We have also discussed a union-find algorithm for cycle detection in undirected graphs.. The time complexity of the union-find algorithm is O(ELogV). Like directed graphs, we can use DFS to detect cycle in an undirected graph in O(V+E) time. We have discussed DFS based solution for cycle detection in undirected graph.

In this article, BFS based solution is discussed. We do a BFS traversal of the given graph. For every visited vertex ‘v’, if there is an adjacent ‘u’ such that u is already visited and u is not parent of v, then there is a cycle in graph. If we don’t find such an adjacent for any vertex, we say that there is no cycle. The assumption of this approach is that there are no parallel edges between any two vertices.

We use a parent array to keep track of parent vertex for a vertex so that we do not consider visited parent as cycle.

## C++

 `// C++ program to detect cycle in an undirected graph ` `// using BFS. ` `#include ` `using` `namespace` `std; ` ` `  `void` `addEdge(vector<``int``> adj[], ``int` `u, ``int` `v) ` `{ ` `    ``adj[u].push_back(v); ` `    ``adj[v].push_back(u); ` `} ` ` `  `bool` `isCyclicConntected(vector<``int``> adj[], ``int` `s, ` `                        ``int` `V, vector<``bool``>& visited) ` `{ ` `    ``// Set parent vertex for every vertex as -1. ` `    ``vector<``int``> parent(V, -1); ` ` `  `    ``// Create a queue for BFS ` `    ``queue<``int``> q; ` ` `  `    ``// Mark the current node as visited and enqueue it ` `    ``visited[s] = ``true``; ` `    ``q.push(s); ` ` `  `    ``while` `(!q.empty()) { ` ` `  `        ``// Dequeue a vertex from queue and print it ` `        ``int` `u = q.front(); ` `        ``q.pop(); ` ` `  `        ``// Get all adjacent vertices of the dequeued ` `        ``// vertex u. If a adjacent has not been visited, ` `        ``// then mark it visited and enqueue it. We also ` `        ``// mark parent so that parent is not considered ` `        ``// for cycle. ` `        ``for` `(``auto` `v : adj[u]) { ` `            ``if` `(!visited[v]) { ` `                ``visited[v] = ``true``; ` `                ``q.push(v); ` `                ``parent[v] = u; ` `            ``} ` `            ``else` `if` `(parent[u] != v) ` `                ``return` `true``; ` `        ``} ` `    ``} ` `    ``return` `false``; ` `} ` ` `  `bool` `isCyclicDisconntected(vector<``int``> adj[], ``int` `V) ` `{ ` `    ``// Mark all the vertices as not visited ` `    ``vector<``bool``> visited(V, ``false``); ` ` `  `    ``for` `(``int` `i = 0; i < V; i++) ` `        ``if` `(!visited[i] && isCyclicConntected(adj, i, ` `                                         ``V, visited)) ` `            ``return` `true``; ` `    ``return` `false``; ` `} ` ` `  `// Driver program to test methods of graph class ` `int` `main() ` `{ ` `    ``int` `V = 4; ` `    ``vector<``int``> adj[V]; ` `    ``addEdge(adj, 0, 1); ` `    ``addEdge(adj, 1, 2); ` `    ``addEdge(adj, 2, 0); ` `    ``addEdge(adj, 2, 3); ` ` `  `    ``if` `(isCyclicDisconntected(adj, V)) ` `        ``cout << ``"Yes"``; ` `    ``else` `        ``cout << ``"No"``; ` ` `  `    ``return` `0; ` `} `

## Java

 `import` `java.util.ArrayList; ` `import` `java.util.Arrays; ` `import` `java.util.LinkedList; ` `import` `java.util.Queue; ` ` `  `// Java program to detect cycle in ` `//  an undirected graph using BFS. ` `class` `cycle ` `{ ` `     `  `    ``public` `static` `void` `main(String arg[])  ` `    ``{ ` ` `  `        ``int` `V = ``4``; ` `        ``ArrayList adj[] = ``new` `ArrayList[V]; ` `        ``for``(``int` `i = ``0``; i < ``4``; i++) ` `            ``adj[i] = ``new` `ArrayList(); ` ` `  `        ``addEdge(adj, ``0``, ``1``); ` `        ``addEdge(adj, ``1``, ``2``); ` `        ``addEdge(adj, ``2``, ``0``); ` `        ``addEdge(adj, ``2``, ``3``); ` ` `  `        ``if` `(isCyclicDisconntected(adj, V)) ` `            ``System.out.println(``"Yes"``); ` `        ``else` `            ``System.out.println(``"No"``); ` ` `  ` `  `    ``} ` ` `  `    ``static` `void` `addEdge(ArrayList adj[], ``int` `u, ``int` `v) ` `    ``{ ` `        ``adj[u].add(v); ` `        ``adj[v].add(u); ` `    ``} ` ` `  `        ``static` `boolean` `isCyclicConntected(ArrayList adj[], ``int` `s, ` `                                            ``int` `V, ``boolean` `visited[])  ` `        ``{ ` `             `  `            ``// Set parent vertex for every vertex as -1. ` `            ``int` `parent[] = ``new` `int``[V]; ` `            ``Arrays.fill(parent, -``1``); ` ` `  `            ``// Create a queue for BFS ` `            ``Queue q = ``new` `LinkedList<>(); ` ` `  `            ``// Mark the current node as ` `            ``// visited and enqueue it ` `            ``visited[s] = ``true``; ` `            ``q.add(s); ` ` `  `            ``while` `(!q.isEmpty())  ` `            ``{ ` ` `  `                ``// Dequeue a vertex from  ` `                ``// queue and print it ` `                ``int` `u = q.poll(); ` ` `  ` `  `                ``// Get all adjacent vertices  ` `                ``// of the dequeued vertex u. ` `                ``// If a adjacent has not been  ` `                ``// visited, then mark it visited ` `                ``// and enqueue it. We also mark parent ` `                ``// so that parent is not considered ` `                ``// for cycle. ` `                ``for` `(``int` `i=``0``; i adj[], ``int` `V) ` `        ``{ ` `             `  `            ``// Mark all the vertices as not visited ` `            ``boolean` `visited[] = ``new` `boolean``[V]; ` `            ``Arrays.fill(visited,``false``); ` ` `  `            ``for` `(``int` `i = ``0``; i < V; i++) ` `                ``if` `(!visited[i] &&  ` `                     ``isCyclicConntected(adj, i, V, visited)) ` `                    ``return` `true``; ` `            ``return` `false``; ` `        ``} ` `} ` ` `  `// This code is contributed by mayukh Sengupta `

## Python3

 `# Python3 program to detect cycle in  ` `# an undirected graph using BFS. ` `from` `collections ``import` `deque ` ` `  `def` `addEdge(adj: ``list``, u, v): ` `    ``adj[u].append(v) ` `    ``adj[v].append(u) ` ` `  `def` `isCyclicConnected(adj: ``list``, s, V,  ` `                      ``visited: ``list``): ` ` `  `    ``# Set parent vertex for every vertex as -1. ` `    ``parent ``=` `[``-``1``] ``*` `V ` ` `  `    ``# Create a queue for BFS ` `    ``q ``=` `deque() ` ` `  `    ``# Mark the current node as  ` `    ``# visited and enqueue it ` `    ``visited[s] ``=` `True` `    ``q.append(s) ` ` `  `    ``while` `q !``=` `[]: ` ` `  `        ``# Dequeue a vertex from queue and print it ` `        ``u ``=` `q.pop() ` ` `  `        ``# Get all adjacent vertices of the dequeued ` `        ``# vertex u. If a adjacent has not been visited, ` `        ``# then mark it visited and enqueue it. We also ` `        ``# mark parent so that parent is not considered ` `        ``# for cycle. ` `        ``for` `v ``in` `adj[u]: ` `            ``if` `not` `visited[v]: ` `                ``visited[v] ``=` `True` `                ``q.append(v) ` `                ``parent[v] ``=` `u ` `            ``elif` `parent[u] !``=` `v: ` `                ``return` `True` ` `  `    ``return` `False` ` `  `def` `isCyclicDisconnected(adj: ``list``, V): ` ` `  `    ``# Mark all the vertices as not visited ` `    ``visited ``=` `[``False``] ``*` `V ` ` `  `    ``for` `i ``in` `range``(V): ` `        ``if` `not` `visited[i] ``and` `\ ` `               ``isCyclicConnected(adj, i, V, visited): ` `            ``return` `True` `    ``return` `False` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `    ``V ``=` `4` `    ``adj ``=` `[[] ``for` `i ``in` `range``(V)] ` `    ``addEdge(adj, ``0``, ``1``) ` `    ``addEdge(adj, ``1``, ``2``) ` `    ``addEdge(adj, ``2``, ``0``) ` `    ``addEdge(adj, ``2``, ``3``) ` ` `  `    ``if` `isCyclicDisconnected(adj, V): ` `        ``print``(``"Yes"``) ` `    ``else``: ` `        ``print``(``"No"``) ` ` `  `# This code is contributed by ` `# sanjeev2552 `

## C#

 `// A C# program to detect cycle in ` `// an undirected graph using BFS. ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` `    ``public` `static` `void` `Main(String []arg)  ` `    ``{ ` `        ``int` `V = 4; ` `        ``List<``int``> []adj = ``new` `List<``int``>[V]; ` `        ``for` `(``int` `i = 0; i < 4; i++)  ` `        ``{ ` `            ``adj[i] = ``new` `List<``int``>(); ` `        ``} ` ` `  `        ``addEdge(adj, 0, 1); ` `        ``addEdge(adj, 1, 2); ` `        ``addEdge(adj, 2, 0); ` `        ``addEdge(adj, 2, 3); ` ` `  `        ``if` `(isCyclicDisconntected(adj, V))  ` `        ``{ ` `            ``Console.WriteLine(``"Yes"``); ` `        ``}  ` `        ``else`  `        ``{ ` `            ``Console.WriteLine(``"No"``); ` `        ``} ` `    ``} ` ` `  `    ``static` `void` `addEdge(List<``int``> []adj, ``int` `u, ``int` `v)  ` `    ``{ ` `        ``adj[u].Add(v); ` `        ``adj[v].Add(u); ` `    ``} ` ` `  `    ``static` `bool` `isCyclicConntected(List<``int``> []adj, ``int` `s,  ` `                                    ``int` `V, ``bool` `[]visited)  ` `    ``{ ` ` `  `        ``// Set parent vertex for every vertex as -1. ` `        ``int` `[]parent = ``new` `int``[V]; ` `        ``for` `(``int` `i = 0; i < V; i++) ` `        ``parent[i] = -1; ` ` `  `        ``// Create a queue for BFS ` `        ``Queue<``int``> q = ``new` `Queue<``int``>(); ` ` `  `        ``// Mark the current node as ` `        ``// visited and enqueue it ` `        ``visited[s] = ``true``; ` `        ``q.Enqueue(s); ` ` `  `        ``while` `(q.Count != 0)  ` `        ``{ ` ` `  `            ``// Dequeue a vertex from  ` `            ``// queue and print it ` `            ``int` `u = q.Dequeue(); ` ` `  `            ``// Get all adjacent vertices  ` `            ``// of the dequeued vertex u. ` `            ``// If a adjacent has not been  ` `            ``// visited, then mark it visited ` `            ``// and enqueue it. We also mark parent ` `            ``// so that parent is not considered ` `            ``// for cycle. ` `            ``for` `(``int` `i = 0; i < adj[u].Count; i++) ` `            ``{ ` `                ``int` `v = adj[u][i]; ` `                ``if` `(!visited[v])  ` `                ``{ ` `                    ``visited[v] = ``true``; ` `                    ``q.Enqueue(v); ` `                    ``parent[v] = u; ` `                ``} ` `                ``else` `if` `(parent[u] != v) ` `                ``{ ` `                    ``return` `true``; ` `                ``} ` `            ``} ` `        ``} ` `        ``return` `false``; ` `    ``} ` ` `  `    ``static` `bool` `isCyclicDisconntected(List<``int``> []adj, ``int` `V) ` `    ``{ ` ` `  `        ``// Mark all the vertices as not visited ` `        ``bool` `[]visited = ``new` `bool``[V]; ` ` `  `        ``for` `(``int` `i = 0; i < V; i++)  ` `        ``{ ` `            ``if` `(!visited[i] &&  ` `                ``isCyclicConntected(adj, i, V, visited)) ` `            ``{ ` `                ``return` `true``; ` `            ``} ` `        ``} ` `        ``return` `false``; ` `    ``} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output :

`Yes`

Time Complexity: The program does a simple BFS Traversal of graph and graph is represented using adjacency list. So the time complexity is O(V+E)

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

5

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.