Given an array ‘pre[]’ that represents Preorder traversal of a spacial binary tree where every node has either 0 or 2 children. One more array ‘preLN[]’ is given which has only two possible values ‘L’ and ‘N’. The value ‘L’ in ‘preLN[]’ indicates that the corresponding node in Binary Tree is a leaf node and value ‘N’ indicates that the corresponding node is non-leaf node. Write a function to construct the tree from the given two arrays.
Example:
Input: pre[] = {10, 30, 20, 5, 15}, preLN[] = {'N', 'N', 'L', 'L', 'L'} Output: Root of following tree 10 / \ 30 15 / \ 20 5
The first element in pre[] will always be root. So we can easily figure out root. If left subtree is empty, the right subtree must also be empty and preLN[] entry for root must be ‘L’. We can simply create a node and return it. If left and right subtrees are not empty, then recursively call for left and right subtrees and link the returned nodes to root.
C++
/* A program to construct Binary Tree from preorder traversal */ #include<bits/stdc++.h> /* A binary tree node structure */ struct node { int data; struct node *left; struct node *right; }; /* Utility function to create a new Binary Tree node */ struct node* newNode ( int data) { struct node *temp = new struct node; temp->data = data; temp->left = NULL; temp->right = NULL; return temp; } /* A recursive function to create a Binary Tree from given pre[] preLN[] arrays. The function returns root of tree. index_ptr is used to update index values in recursive calls. index must be initially passed as 0 */ struct node *constructTreeUtil( int pre[], char preLN[], int *index_ptr, int n) { int index = *index_ptr; // store the current value of index in pre[] // Base Case: All nodes are constructed if (index == n) return NULL; // Allocate memory for this node and increment index for // subsequent recursive calls struct node *temp = newNode ( pre[index] ); (*index_ptr)++; // If this is an internal node, construct left and right subtrees and link the subtrees if (preLN[index] == 'N' ) { temp->left = constructTreeUtil(pre, preLN, index_ptr, n); temp->right = constructTreeUtil(pre, preLN, index_ptr, n); } return temp; } // A wrapper over constructTreeUtil() struct node *constructTree( int pre[], char preLN[], int n) { // Initialize index as 0. Value of index is used in recursion to maintain // the current index in pre[] and preLN[] arrays. int index = 0; return constructTreeUtil (pre, preLN, &index, n); } /* This function is used only for testing */ void printInorder ( struct node* node) { if (node == NULL) return ; /* first recur on left child */ printInorder (node->left); /* then print the data of node */ printf ( "%d " , node->data); /* now recur on right child */ printInorder (node->right); } /* Driver function to test above functions */ int main() { struct node *root = NULL; /* Constructing tree given in the above figure 10 / \ 30 15 / \ 20 5 */ int pre[] = {10, 30, 20, 5, 15}; char preLN[] = { 'N' , 'N' , 'L' , 'L' , 'L' }; int n = sizeof (pre)/ sizeof (pre[0]); // construct the above tree root = constructTree (pre, preLN, n); // Test the constructed tree printf ( "Following is Inorder Traversal of the Constructed Binary Tree: \n" ); printInorder (root); return 0; } |
Java
// Java program to construct a binary tree from preorder traversal // A Binary Tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class Index { int index = 0 ; } class BinaryTree { Node root; Index myindex = new Index(); /* A recursive function to create a Binary Tree from given pre[] preLN[] arrays. The function returns root of tree. index_ptr is used to update index values in recursive calls. index must be initially passed as 0 */ Node constructTreeUtil( int pre[], char preLN[], Index index_ptr, int n, Node temp) { // store the current value of index in pre[] int index = index_ptr.index; // Base Case: All nodes are constructed if (index == n) return null ; // Allocate memory for this node and increment index for // subsequent recursive calls temp = new Node(pre[index]); (index_ptr.index)++; // If this is an internal node, construct left and right subtrees // and link the subtrees if (preLN[index] == 'N' ) { temp.left = constructTreeUtil(pre, preLN, index_ptr, n, temp.left); temp.right = constructTreeUtil(pre, preLN, index_ptr, n, temp.right); } return temp; } // A wrapper over constructTreeUtil() Node constructTree( int pre[], char preLN[], int n, Node node) { // Initialize index as 0. Value of index is used in recursion to // maintain the current index in pre[] and preLN[] arrays. int index = 0 ; return constructTreeUtil(pre, preLN, myindex, n, node); } /* This function is used only for testing */ void printInorder(Node node) { if (node == null ) return ; /* first recur on left child */ printInorder(node.left); /* then print the data of node */ System.out.print(node.data + " " ); /* now recur on right child */ printInorder(node.right); } // driver function to test the above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); int pre[] = new int []{ 10 , 30 , 20 , 5 , 15 }; char preLN[] = new char []{ 'N' , 'N' , 'L' , 'L' , 'L' }; int n = pre.length; // construct the above tree Node mynode = tree.constructTree(pre, preLN, n, tree.root); // Test the constructed tree System.out.println( "Following is Inorder Traversal of the" + "Constructed Binary Tree: " ); tree.printInorder(mynode); } } // This code has been contributed by Mayank Jaiswal |
Python3
# A program to construct Binary # Tree from preorder traversal # Utility function to create a # new Binary Tree node class newNode: def __init__( self , data): self .data = data self .left = None self .right = None # A recursive function to create a # Binary Tree from given pre[] preLN[] # arrays. The function returns root of # tree. index_ptr is used to update # index values in recursive calls. index # must be initially passed as 0 def constructTreeUtil(pre, preLN, index_ptr, n): index = index_ptr[ 0 ] # store the current value # of index in pre[] # Base Case: All nodes are constructed if index = = n: return None # Allocate memory for this node and # increment index for subsequent # recursive calls temp = newNode(pre[index]) index_ptr[ 0 ] + = 1 # If this is an internal node, construct left # and right subtrees and link the subtrees if preLN[index] = = 'N' : temp.left = constructTreeUtil(pre, preLN, index_ptr, n) temp.right = constructTreeUtil(pre, preLN, index_ptr, n) return temp # A wrapper over constructTreeUtil() def constructTree(pre, preLN, n): # Initialize index as 0. Value of index is # used in recursion to maintain the current # index in pre[] and preLN[] arrays. index = [ 0 ] return constructTreeUtil(pre, preLN, index, n) # This function is used only for testing def printInorder (node): if node = = None : return # first recur on left child printInorder (node.left) # then print the data of node print (node.data,end = " " ) # now recur on right child printInorder (node.right) # Driver Code if __name__ = = '__main__' : root = None # Constructing tree given in # the above figure # 10 # / \ # 30 15 # / \ # 20 5 pre = [ 10 , 30 , 20 , 5 , 15 ] preLN = [ 'N' , 'N' , 'L' , 'L' , 'L' ] n = len (pre) # construct the above tree root = constructTree (pre, preLN, n) # Test the constructed tree print ( "Following is Inorder Traversal of" , "the Constructed Binary Tree:" ) printInorder (root) # This code is contributed by PranchalK |
C#
// C# program to construct a binary // tree from preorder traversal using System; // A Binary Tree node public class Node { public int data; public Node left, right; public Node( int item) { data = item; left = right = null ; } } public class Index { public int index = 0; } class GFG { public Node root; public Index myindex = new Index(); /* A recursive function to create a Binary Tree from given pre[] preLN[] arrays. The function returns root of tree. index_ptr is used to update index values in recursive calls. index must be initially passed as 0 */ public virtual Node constructTreeUtil( int [] pre, char [] preLN, Index index_ptr, int n, Node temp) { // store the current value of index in pre[] int index = index_ptr.index; // Base Case: All nodes are constructed if (index == n) { return null ; } // Allocate memory for this node // and increment index for // subsequent recursive calls temp = new Node(pre[index]); (index_ptr.index)++; // If this is an internal node, // construct left and right subtrees // and link the subtrees if (preLN[index] == 'N' ) { temp.left = constructTreeUtil(pre, preLN, index_ptr, n, temp.left); temp.right = constructTreeUtil(pre, preLN, index_ptr, n, temp.right); } return temp; } // A wrapper over constructTreeUtil() public virtual Node constructTree( int [] pre, char [] preLN, int n, Node node) { // Initialize index as 0. Value of // index is used in recursion to // maintain the current index in // pre[] and preLN[] arrays. int index = 0; return constructTreeUtil(pre, preLN, myindex, n, node); } /* This function is used only for testing */ public virtual void printInorder(Node node) { if (node == null ) { return ; } /* first recur on left child */ printInorder(node.left); /* then print the data of node */ Console.Write(node.data + " " ); /* now recur on right child */ printInorder(node.right); } // Driver Code public static void Main( string [] args) { GFG tree = new GFG(); int [] pre = new int []{10, 30, 20, 5, 15}; char [] preLN = new char []{ 'N' , 'N' , 'L' , 'L' , 'L' }; int n = pre.Length; // construct the above tree Node mynode = tree.constructTree(pre, preLN, n, tree.root); // Test the constructed tree Console.WriteLine( "Following is Inorder Traversal of the" + "Constructed Binary Tree: " ); tree.printInorder(mynode); } } // This code is contributed by Shrikant13 |
Output:
Following is Inorder Traversal of the Constructed Binary Tree: 20 30 5 10 15
Time Complexity: O(n)
Construct the full k-ary tree from its preorder traversal
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.