Insertion in a Binary Tree in level order

Given a binary tree and a key, insert the key into the binary tree at the first position available in level order.
 

 

The idea is to do iterative level order traversal of the given tree using queue. If we find a node whose left child is empty, we make new key as left child of the node. Else if we find a node whose right child is empty, we make the new key as right child. We keep traversing the tree until we find a node whose either left or right is empty. 
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to insert element in Binary Tree
#include <iostream>
#include <queue>
using namespace std;
 
/* A binary tree node has data, pointer to left child
and a pointer to right child */
 
struct Node {
    int data;
    Node* left;
    Node* right;
};
 
/* Function to create a new node */
 
Node* CreateNode(int data)
{
    Node* newNode = new Node();
    if (!newNode) {
        cout << "Memory error\n";
        return NULL;
    }
    newNode->data = data;
    newNode->left = newNode->right = NULL;
    return newNode;
}
 
/* Function to insert element in binary tree */
 
Node* InsertNode(Node* root, int data)
{
    // If the tree is empty, assign new node address to root
    if (root == NULL) {
        root = CreateNode(data);
        return root;
    }
 
    // Else, do level order traversal until we find an empty
    // place, i.e. either left child or right child of some
    // node is pointing to NULL.
    queue<Node*> q;
    q.push(root);
 
    while (!q.empty()) {
        Node* temp = q.front();
        q.pop();
 
        if (temp->left != NULL)
            q.push(temp->left);
        else {
            temp->left = CreateNode(data);
            return root;
        }
 
        if (temp->right != NULL)
            q.push(temp->right);
        else {
            temp->right = CreateNode(data);
            return root;
        }
    }
}
 
/* Inorder traversal of a binary tree */
 
void inorder(Node* temp)
{
    if (temp == NULL)
        return;
 
    inorder(temp->left);
    cout << temp->data << ' ';
    inorder(temp->right);
}
 
// Driver code
int main()
{
    Node* root = CreateNode(10);
    root->left = CreateNode(11);
    root->left->left = CreateNode(7);
    root->right = CreateNode(9);
    root->right->left = CreateNode(15);
    root->right->right = CreateNode(8);
 
    cout << "Inorder traversal before insertion: ";
    inorder(root);
    cout << endl;
 
    int key = 12;
    root = InsertNode(root, key);
 
    cout << "Inorder traversal after insertion: ";
    inorder(root);
    cout << endl;
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to insert element in binary tree
import java.util.LinkedList;
import java.util.Queue;
public class GFG {
 
    /* A binary tree node has key, pointer to
    left child and a pointer to right child */
    static class Node {
        int key;
        Node left, right;
 
        // constructor
        Node(int key)
        {
            this.key = key;
            left = null;
            right = null;
        }
    }
    static Node root;
    static Node temp = root;
 
    /* Inorder traversal of a binary tree*/
    static void inorder(Node temp)
    {
        if (temp == null)
            return;
 
        inorder(temp.left);
        System.out.print(temp.key + " ");
        inorder(temp.right);
    }
 
    /*function to insert element in binary tree */
    static void insert(Node temp, int key)
    {
 
        if (temp == null) {
            root = new Node(key);
            return;
        }
        Queue<Node> q = new LinkedList<Node>();
        q.add(temp);
 
        // Do level order traversal until we find
        // an empty place.
        while (!q.isEmpty()) {
            temp = q.peek();
            q.remove();
 
            if (temp.left == null) {
                temp.left = new Node(key);
                break;
            }
            else
                q.add(temp.left);
 
            if (temp.right == null) {
                temp.right = new Node(key);
                break;
            }
            else
                q.add(temp.right);
        }
    }
 
    // Driver code
    public static void main(String args[])
    {
        root = new Node(10);
        root.left = new Node(11);
        root.left.left = new Node(7);
        root.right = new Node(9);
        root.right.left = new Node(15);
        root.right.right = new Node(8);
 
        System.out.print(
            "Inorder traversal before insertion:");
        inorder(root);
 
        int key = 12;
        insert(root, key);
 
        System.out.print(
            "\nInorder traversal after insertion:");
        inorder(root);
    }
}
// This code is contributed by Sumit Ghosh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to insert element in binary tree
class newNode():
 
    def __init__(self, data):
        self.key = data
        self.left = None
        self.right = None
         
""" Inorder traversal of a binary tree"""
def inorder(temp):
 
    if (not temp):
        return
 
    inorder(temp.left)
    print(temp.key,end = " ")
    inorder(temp.right)
 
 
"""function to insert element in binary tree """
def insert(temp,key):
 
    if not temp:
        root = newNode(key)
        return
    q = []
    q.append(temp)
 
    # Do level order traversal until we find
    # an empty place.
    while (len(q)):
        temp = q[0]
        q.pop(0)
 
        if (not temp.left):
            temp.left = newNode(key)
            break
        else:
            q.append(temp.left)
 
        if (not temp.right):
            temp.right = newNode(key)
            break
        else:
            q.append(temp.right)
     
# Driver code
if __name__ == '__main__':
    root = newNode(10)
    root.left = newNode(11)
    root.left.left = newNode(7)
    root.right = newNode(9)
    root.right.left = newNode(15)
    root.right.right = newNode(8)
 
    print("Inorder traversal before insertion:", end = " ")
    inorder(root)
 
    key = 12
    insert(root, key)
 
    print()
    print("Inorder traversal after insertion:", end = " ")
    inorder(root)
 
# This code is contributed by SHUBHAMSINGH10

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to insert element in binary tree
using System;
using System.Collections.Generic;
 
class GFG {
 
    /* A binary tree node has key, pointer to
    left child and a pointer to right child */
    public class Node {
        public int key;
        public Node left, right;
 
        // constructor
        public Node(int key)
        {
            this.key = key;
            left = null;
            right = null;
        }
    }
    static Node root;
 
    /* Inorder traversal of a binary tree*/
    static void inorder(Node temp)
    {
        if (temp == null)
            return;
 
        inorder(temp.left);
        Console.Write(temp.key + " ");
        inorder(temp.right);
    }
 
    /*function to insert element in binary tree */
    static void insert(Node temp, int key)
    {
          if (temp == null) {
            root = new Node(key);
            return;
        }
        Queue<Node> q = new Queue<Node>();
        q.Enqueue(temp);
 
        // Do level order traversal until we find
        // an empty place.
        while (q.Count != 0) {
            temp = q.Peek();
            q.Dequeue();
 
            if (temp.left == null) {
                temp.left = new Node(key);
                break;
            }
            else
                q.Enqueue(temp.left);
 
            if (temp.right == null) {
                temp.right = new Node(key);
                break;
            }
            else
                q.Enqueue(temp.right);
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        root = new Node(10);
        root.left = new Node(11);
        root.left.left = new Node(7);
        root.right = new Node(9);
        root.right.left = new Node(15);
        root.right.right = new Node(8);
 
        Console.Write(
            "Inorder traversal before insertion:");
        inorder(root);
 
        int key = 12;
        insert(root, key);
 
        Console.Write(
            "\nInorder traversal after insertion:");
        inorder(root);
    }
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output

Inorder traversal before insertion: 7 11 10 15 9 8 
Inorder traversal after insertion: 7 11 12 10 15 9 8 

This article is contributed by Yash Singla. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :


113


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.