# Construct the full k-ary tree from its preorder traversal

Given an array which contains the preorder traversal of full k-ary tree, construct the full k-ary tree and print its postorder traversal. A full k-ary tree is a tree where each node has either 0 or k children.

Examples:

```Input : preorder[] = {1, 2, 5, 6, 7,
3, 8, 9, 10, 4}
k = 3
Output : Postorder traversal of constructed
full k-ary tree is: 5 6 7 2 8 9 10
3 4 1
Tree formed is:         1
/   |   \
2     3    4
/|\   /|\
5 6 7 8 9 10

Input : preorder[] = {1, 2, 5, 6, 7, 3, 4}
k = 3
Output : Postorder traversal of constructed
full k-ary tree is: 5 6 7 2 3 4 1
Tree formed is:        1
/  |  \
2    3   4
/|\
5 6 7
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We have discussed this problem for Binary tree in below post.
Construct a special tree from given preorder traversal
In this post, solution for a k-ary tree is discussed.

In Preorder traversal, first root node is processed then followed by the left subtree and right subtree. Because of this, to construct a full k-ary tree, we just need to keep on creating the nodes without bothering about the previous constructed nodes. We can use this to build the tree recursively.
Following are the steps to solve the problem:
1. Find the height of the tree.
2. Traverse the preorder array and recursively add each node

## C++

 `// C++ program to build full k-ary tree from ` `// its preorder traversal and to print the ` `// postorder traversal of the tree. ` `#include ` `using` `namespace` `std; ` ` `  `// Structure of a node of an n-ary tree ` `struct` `Node { ` `    ``int` `key; ` `    ``vector child; ` `}; ` ` `  `// Utility function to create a new tree  ` `// node with k children ` `Node* newNode(``int` `value) ` `{ ` `    ``Node* nNode = ``new` `Node; ` `    ``nNode->key = value; ` `    ``return` `nNode; ` `} ` ` `  `// Function to build full k-ary tree ` `Node* BuildKaryTree(``int` `A[], ``int` `n, ``int` `k, ``int` `h, ``int``& ind) ` `{ ` `    ``// For null tree ` `    ``if` `(n <= 0) ` `        ``return` `NULL; ` ` `  `    ``Node* nNode = newNode(A[ind]); ` `    ``if` `(nNode == NULL) { ` `        ``cout << ``"Memory error"` `<< endl; ` `        ``return` `NULL; ` `    ``} ` ` `  `    ``// For adding k children to a node ` `    ``for` `(``int` `i = 0; i < k; i++) { ` ` `  `        ``// Check if ind is in range of array ` `        ``// Check if height of the tree is greater than 1 ` `        ``if` `(ind < n - 1 && h > 1) { ` `            ``ind++; ` ` `  `            ``// Recursively add each child ` `            ``nNode->child.push_back(BuildKaryTree(A, n, k, h - 1, ind)); ` `        ``} ``else` `{ ` `            ``nNode->child.push_back(NULL); ` `        ``} ` `    ``} ` `    ``return` `nNode; ` `} ` ` `  `// Function to find the height of the tree ` `Node* BuildKaryTree(``int``* A, ``int` `n, ``int` `k, ``int` `ind) ` `{ ` `    ``int` `height = (``int``)``ceil``(``log``((``double``)n * (k - 1) + 1)  ` `                 ``/ ``log``((``double``)k)); ` `    ``return` `BuildKaryTree(A, n, k, height, ind); ` `} ` ` `  `// Function to print postorder traversal of the tree ` `void` `postord(Node* root, ``int` `k) ` `{ ` `    ``if` `(root == NULL) ` `        ``return``; ` `    ``for` `(``int` `i = 0; i < k; i++) ` `        ``postord(root->child[i], k); ` `    ``cout << root->key << ``" "``; ` `} ` ` `  `// Driver program to implement full k-ary tree ` `int` `main() ` `{ ` `    ``int` `ind = 0; ` `    ``int` `k = 3, n = 10; ` `    ``int` `preorder[] = { 1, 2, 5, 6, 7, 3, 8, 9, 10, 4 }; ` `    ``Node* root = BuildKaryTree(preorder, n, k, ind); ` `    ``cout << ``"Postorder traversal of constructed"` `             ``" full k-ary tree is: "``; ` `    ``postord(root, k); ` `    ``cout << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java program to build full k-ary tree from ` `// its preorder traversal and to print the ` `// postorder traversal of the tree. ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// Structure of a node of an n-ary tree ` `static` `class` `Node  ` `{ ` `    ``int` `key; ` `    ``Vector child; ` `}; ` ` `  `// Utility function to create a new tree  ` `// node with k children ` `static` `Node newNode(``int` `value) ` `{ ` `    ``Node nNode = ``new` `Node(); ` `    ``nNode.key = value; ` `    ``nNode.child= ``new` `Vector(); ` `    ``return` `nNode; ` `} ` ` `  `static` `int` `ind; ` ` `  `// Function to build full k-ary tree ` `static` `Node BuildKaryTree(``int` `A[], ``int` `n,  ` `                          ``int` `k, ``int` `h) ` `{ ` `    ``// For null tree ` `    ``if` `(n <= ``0``) ` `        ``return` `null``; ` ` `  `    ``Node nNode = newNode(A[ind]); ` `    ``if` `(nNode == ``null``) ` `    ``{ ` `        ``System.out.println(``"Memory error"` `); ` `        ``return` `null``; ` `    ``} ` ` `  `    ``// For adding k children to a node ` `    ``for` `(``int` `i = ``0``; i < k; i++) ` `    ``{ ` ` `  `        ``// Check if ind is in range of array ` `        ``// Check if height of the tree is greater than 1 ` `        ``if` `(ind < n - ``1` `&& h > ``1``)  ` `        ``{ ` `            ``ind++; ` ` `  `            ``// Recursively add each child ` `            ``nNode.child.add(BuildKaryTree(A, n, k, h - ``1``)); ` `        ``}  ` `        ``else` `        ``{ ` `            ``nNode.child.add(``null``); ` `        ``} ` `    ``} ` `    ``return` `nNode; ` `} ` ` `  `// Function to find the height of the tree ` `static` `Node BuildKaryTree_1(``int``[] A, ``int` `n, ``int` `k, ``int` `in) ` `{ ` `    ``int` `height = (``int``)Math.ceil(Math.log((``double``)n * (k - ``1``) + ``1``) /  ` `                                ``Math.log((``double``)k)); ` `    ``ind = in; ` `    ``return` `BuildKaryTree(A, n, k, height); ` `} ` ` `  `// Function to print postorder traversal of the tree ` `static` `void` `postord(Node root, ``int` `k) ` `{ ` `    ``if` `(root == ``null``) ` `        ``return``; ` `    ``for` `(``int` `i = ``0``; i < k; i++) ` `        ``postord(root.child.get(i), k); ` `    ``System.out.print(root.key + ``" "``); ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String args[]) ` `{ ` `    ``int` `ind = ``0``; ` `    ``int` `k = ``3``, n = ``10``; ` `    ``int` `preorder[] = { ``1``, ``2``, ``5``, ``6``, ``7``, ``3``, ``8``, ``9``, ``10``, ``4` `}; ` `    ``Node root = BuildKaryTree_1(preorder, n, k, ind); ` `    ``System.out.println(``"Postorder traversal of "` `+  ` `                       ``"constructed full k-ary tree is: "``); ` `    ``postord(root, k); ` `    ``System.out.println(); ` `} ` `} ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

 `# Python3 program to build full k-ary tree  ` `# from its preorder traversal and to print the  ` `# postorder traversal of the tree.  ` `from` `math ``import` `ceil, log ` ` `  `# Utility function to create a new  ` `# tree node with k children  ` `class` `newNode: ` `    ``def` `__init__(``self``, value): ` `        ``self``.key ``=` `value ` `        ``self``.child ``=` `[] ` ` `  `# Function to build full k-ary tree  ` `def` `BuildkaryTree(A, n, k, h, ind): ` `     `  `    ``# For None tree  ` `    ``if` `(n <``=` `0``): ` `        ``return` `None` ` `  `    ``nNode ``=` `newNode(A[ind[``0``]])  ` `    ``if` `(nNode ``=``=` `None``):  ` `        ``print``(``"Memory error"``)  ` `        ``return` `None` ` `  `    ``# For adding k children to a node ` `    ``for` `i ``in` `range``(k): ` ` `  `        ``# Check if ind is in range of array  ` `        ``# Check if height of the tree is  ` `        ``# greater than 1  ` `        ``if` `(ind[``0``] < n ``-` `1` `and` `h > ``1``):  ` `            ``ind[``0``] ``+``=` `1` ` `  `            ``# Recursively add each child  ` `            ``nNode.child.append(BuildkaryTree(A, n, k, ` `                                             ``h ``-` `1``, ind)) ` `        ``else``:  ` `            ``nNode.child.append(``None``) ` `    ``return` `nNode ` ` `  `# Function to find the height of the tree  ` `def` `BuildKaryTree(A, n, k, ind): ` `    ``height ``=` `int``(ceil(log(``float``(n) ``*` `(k ``-` `1``) ``+` `1``) ``/` `                                      ``log(``float``(k))))  ` `    ``return` `BuildkaryTree(A, n, k, height, ind) ` ` `  `# Function to prpostorder traversal ` `# of the tree  ` `def` `postord(root, k): ` `    ``if` `(root ``=``=` `None``): ` `        ``return` `    ``for` `i ``in` `range``(k): ` `        ``postord(root.child[i], k)  ` `    ``print``(root.key, end ``=` `" "``) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``ind ``=` `[``0``]  ` `    ``k ``=` `3` `    ``n ``=` `10` `    ``preorder ``=` `[ ``1``, ``2``, ``5``, ``6``, ``7``, ``3``, ``8``, ``9``, ``10``, ``4``]  ` `    ``root ``=` `BuildKaryTree(preorder, n, k, ind)  ` `    ``print``(``"Postorder traversal of constructed"``,  ` `                        ``"full k-ary tree is: "``)  ` `    ``postord(root, k) ` `     `  `# This code is contributed by pranchalK `

## C#

 `// C# program to build full k-ary tree from  ` `// its preorder traversal and to print the  ` `// postorder traversal of the tree.  ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG  ` `{  ` ` `  `// Structure of a node of an n-ary tree  ` `class` `Node  ` `{  ` `    ``public` `int` `key;  ` `    ``public` `List child;  ` `};  ` ` `  `// Utility function to create a new tree  ` `// node with k children  ` `static` `Node newNode(``int` `value)  ` `{  ` `    ``Node nNode = ``new` `Node();  ` `    ``nNode.key = value;  ` `    ``nNode.child= ``new` `List();  ` `    ``return` `nNode;  ` `}  ` ` `  `static` `int` `ind;  ` ` `  `// Function to build full k-ary tree  ` `static` `Node BuildKaryTree(``int` `[]A, ``int` `n,  ` `                          ``int` `k, ``int` `h)  ` `{  ` `    ``// For null tree  ` `    ``if` `(n <= 0)  ` `        ``return` `null``;  ` ` `  `    ``Node nNode = newNode(A[ind]);  ` `    ``if` `(nNode == ``null``)  ` `    ``{  ` `        ``Console.WriteLine(``"Memory error"` `);  ` `        ``return` `null``;  ` `    ``}  ` ` `  `    ``// For adding k children to a node  ` `    ``for` `(``int` `i = 0; i < k; i++)  ` `    ``{  ` ` `  `        ``// Check if ind is in range of array  ` `        ``// Check if height of the tree is greater than 1  ` `        ``if` `(ind < n - 1 && h > 1)  ` `        ``{  ` `            ``ind++;  ` ` `  `            ``// Recursively add each child  ` `            ``nNode.child.Add(BuildKaryTree(A, n, k, h - 1));  ` `        ``}  ` `        ``else` `        ``{  ` `            ``nNode.child.Add(``null``);  ` `        ``}  ` `    ``}  ` `    ``return` `nNode;  ` `}  ` ` `  `// Function to find the height of the tree  ` `static` `Node BuildKaryTree_1(``int``[] A, ``int` `n, ``int` `k, ``int` `iN)  ` `{  ` `    ``int` `height = (``int``)Math.Ceiling(Math.Log((``double``)n * (k - 1) + 1) /  ` `                                   ``Math.Log((``double``)k));  ` `    ``ind = iN;  ` `    ``return` `BuildKaryTree(A, n, k, height);  ` `}  ` ` `  `// Function to print postorder traversal of the tree  ` `static` `void` `postord(Node root, ``int` `k)  ` `{  ` `    ``if` `(root == ``null``)  ` `        ``return``;  ` `    ``for` `(``int` `i = 0; i < k; i++)  ` `        ``postord(root.child[i], k);  ` `    ``Console.Write(root.key + ``" "``);  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `Main(String []args)  ` `{  ` `    ``int` `ind = 0;  ` `    ``int` `k = 3, n = 10;  ` `    ``int` `[]preorder = { 1, 2, 5, 6, 7, 3, 8, 9, 10, 4 };  ` `    ``Node root = BuildKaryTree_1(preorder, n, k, ind);  ` `    ``Console.WriteLine(``"Postorder traversal of "` `+  ` `                      ``"constructed full k-ary tree is: "``);  ` `    ``postord(root, k);  ` `    ``Console.WriteLine();  ` `}  ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```Postorder traversal of constructed full k-ary
tree is: 5 6 7 2 8 9 10 3 4 1
```

This article is contributed by Prakriti Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

4

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.