Related Articles

# Construct a Perfect Binary Tree from Preorder Traversal

• Last Updated : 13 Oct, 2021

Given an array pre[], representing the Preorder traversal of a Perfect Binary Tree consisting of N nodes, the task is to construct a Perfect Binary Tree from the given Preorder Traversal and return the root of the tree.

Examples:

Input: pre[] = {1, 2, 4, 5, 3, 6, 7}
Output:
1
/    \
/        \
2          3
/   \       /   \
/      \    /      \
4       5   6       7

Input: pre[] = {1, 2, 3}
Output:
1
/    \
/        \
2          3

Generally to construct a binary tree, we can not do it by only using the preorder traversal, but here an extra condition is given that the binary tree is Perfect binary tree. We can use that extra condition.

For Perfect binary tree every node has either 2 or 0 children , and all the leaf nodes are present at same level. And the preorder traversal of a binary tree contains the root first, then the preorder traversal of the left subtree, then the preorder traversal of the right subtree . So for Perfect binary tree root should have same numbers of children in both subtrees , so the number ( say, n) of elements after the root in the preorder traversal should be even (2 * number of nodes in one subtree , as it is Perfect binary tree) . And since each subtrees have equal number of nodes for Perfect  binary tree, we can find the preorder traversal of the left subtree (which is half of the array after the root in preorder traversal of the whole tree), and we know the preorder traversal of the right subtree must be after the preorder traversal of the left subtree, so rest half is the preorder traversal of the right subtree.

So the first element in the preorder traversal is the root, we will build a node as the root with this element , then we can easily find the preorder traversals of the left and right subtrees of the root, and we will recursively build the left and right subtrees of the root.

Approach: The given problem can be solved using recursion. Follow the steps below to solve the problem:

• Create a function, say BuildPerfectBT_helper with parameters as preStart, preEnd, pre[] where preStart represent starting index of the array pre[] and preEnd represents the ending index of the array pre[] and perform the following steps:
• If the value of preStart is greater than preEnd, then return NULL.
• Initialize root as pre[preStart].
• If the value of preStart is the same as the preEnd, then return root.
• Initialize 4 variable, say leftPreStart as preStart + 1, rightPreStart as leftPreStart + (preEnd – leftPreStart+1)/2, leftPreEnd as rightPreStart – 1 and rightPreEnd as preEnd.
• Modify the value of root->left by recursively calling the function buildPerfectBT_helper() with the parameters leftPreStart, leftPreEnd and pre[].
• Modify the value of root->right by recursively calling the function buildPerfectBT_helper() with the parameters rightPreStart, rightPreEnd and pre[].
• After performing the above steps, return root.
• After creating the Perfect Binary Tree, print the Inorder traversal of the tree.

Below is the illustration of the above steps discussed:

Step 1: build([1, 2, 4, 5, 3, 6, 7])

Step 2:
1
/        \
/            \
build([2, 4, 5])      build([3, 6, 7])

Now first element (1 here) is root, then the subarray after the first element  ( which is [2,4,5,3,6,7] here ) contains the preorder traversals of the left and right subtrees. And we know left subtree’s preorder traversal is first half , i.e, [2,4,5]  , and the right subtree’s preorder traversal is the second half , i.e, [3,6,7]. Now recursively build the left and right subtrees.

Step 3:
1

___________|_________________

/                                               \

/                                                      \

2                                                          3

______/___________                                   _______\____________

/                            \                               /                               \

/                                 \                         /                                     \

build()                   build()            build()                          build()

Step 4:
1
/   \
/       \
2         3
/   \     /   \
/     \   /     \
4       5  6     7

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Structure of the tree``struct` `Node {``    ``int` `data;``    ``Node *left, *right;` `    ``Node(``int` `val)``    ``{``        ``data = val;``        ``left = right = NULL;``    ``}``};` `// Function to create a new node with``// the value val``Node* getNewNode(``int` `val)``{``    ``Node* newNode = ``new` `Node(val);``    ``newNode->data = val;``    ``newNode->left = newNode->right = NULL;` `    ``// Return the newly created node``    ``return` `newNode;``}` `// Function to create the Perfect``// Binary Tree``Node* buildPerfectBT_helper(``int` `preStart,``                            ``int` `preEnd,``                            ``int` `pre[])``{``    ``// If preStart > preEnd return NULL``    ``if` `(preStart > preEnd)``        ``return` `NULL;` `    ``// Initialize root as pre[preStart]``    ``Node* root = getNewNode(pre[preStart]);``    ``;` `    ``// If the only node is left,``    ``// then return node``    ``if` `(preStart == preEnd)``        ``return` `root;` `    ``// Parameters for further recursion``    ``int` `leftPreStart = preStart + 1;``    ``int` `rightPreStart = leftPreStart``                        ``+ (preEnd - leftPreStart + 1) / 2;``    ``int` `leftPreEnd = rightPreStart - 1;``    ``int` `rightPreEnd = preEnd;` `    ``// Recursive Call to build the``    ``// subtree of root node``    ``root->left = buildPerfectBT_helper(``        ``leftPreStart, leftPreEnd, pre);` `    ``root->right = buildPerfectBT_helper(``        ``rightPreStart, rightPreEnd, pre);` `    ``// Return the created root``    ``return` `root;``}` `// Function to build Perfect Binary Tree``Node* buildPerfectBT(``int` `pre[], ``int` `size)``{``    ``return` `buildPerfectBT_helper(0, size - 1, pre);``}` `// Function to print the Inorder of``// the given Tree``void` `printInorder(Node* root)``{``    ``// Base Case``    ``if` `(!root)``        ``return``;` `    ``// Left Recursive Call``    ``printInorder(root->left);` `    ``// Print the data``    ``cout << root->data << ``" "``;` `    ``// Right Recursive Call``    ``printInorder(root->right);``}` `// Driver Code``int` `main()``{``    ``int` `pre[] = { 1, 2, 4, 5, 3, 6, 7 };``    ``int` `N = ``sizeof``(pre) / ``sizeof``(pre);` `    ``// Function Call``    ``Node* root = buildPerfectBT(pre, N);` `    ``// Print Inorder Traversal``    ``cout << ``"\nInorder traversal of the tree: "``;``    ``printInorder(root);` `    ``return` `0;``}`

## Python3

 `# Python3 program for the above approach` `# Structure of the tree``class` `Node:``    ``def` `__init__(``self``, val):``        ``self``.data ``=` `val``        ``self``.left ``=` `None``        ``self``.right ``=` `None` `# Function to create a new node with``# the value val``def` `getNewNode(val):``    ``newNode ``=` `Node(val)``    ` `    ``# Return the newly created node``    ``return` `newNode` `# Function to create the Perfect``# Binary Tree``def` `buildPerfectBT_helper(preStart, preEnd, pre):``  ` `    ``# If preStart > preEnd return NULL``    ``if` `(preStart > preEnd):``        ``return` `None` `    ``# Initialize root as pre[preStart]``    ``root ``=` `getNewNode(pre[preStart])` `    ``# If the only node is left,``    ``# then return node``    ``if` `(preStart ``=``=` `preEnd):``        ``return` `root` `    ``# Parameters for further recursion``    ``leftPreStart ``=` `preStart ``+` `1``    ``rightPreStart ``=` `leftPreStart ``+` `int``((preEnd ``-` `leftPreStart ``+` `1``) ``/` `2``)``    ``leftPreEnd ``=` `rightPreStart ``-` `1``    ``rightPreEnd ``=` `preEnd` `    ``# Recursive Call to build the``    ``# subtree of root node``    ``root.left ``=` `buildPerfectBT_helper(leftPreStart, leftPreEnd, pre)` `    ``root.right ``=` `buildPerfectBT_helper(rightPreStart, rightPreEnd, pre)` `    ``# Return the created root``    ``return` `root` `# Function to build Perfect Binary Tree``def` `buildPerfectBT(pre, size):``    ``return` `buildPerfectBT_helper(``0``, size ``-` `1``, pre)` `# Function to print the Inorder of``# the given Tree``def` `printInorder(root):``  ` `    ``# Base Case``    ``if` `(root ``=``=` `None``):``        ``return` `    ``# Left Recursive Call``    ``printInorder(root.left)` `    ``# Print the data``    ``print``(root.data, "``", end = "``")` `    ``# Right Recursive Call``    ``printInorder(root.right)` `pre ``=` `[ ``1``, ``2``, ``4``, ``5``, ``3``, ``6``, ``7` `]``N ``=` `len``(pre)` `# Function Call``root ``=` `buildPerfectBT(pre, N)` `# Print Inorder Traversal``print``(``"Inorder traversal of the tree: "``, end ``=` `"")``printInorder(root)` `# This code is contributed by decode2207.`

## C#

 `// C# program for the above approach``using` `System;``using` `System.Collections.Generic;``class` `GFG {``    ` `    ``// Structure of the tree``    ``class` `Node {``       ` `        ``public` `int` `data;``        ``public` `Node left, right;``       ` `        ``public` `Node(``int` `val)``        ``{``            ``data = val;``            ``left = right = ``null``;``        ``}``    ``}``    ` `    ``// Function to create a new node with``    ``// the value val``    ``static` `Node getNewNode(``int` `val)``    ``{``        ``Node newNode = ``new` `Node(val);``        ``// Return the newly created node``        ``return` `newNode;``    ``}`` ` `    ``// Function to create the Perfect``    ``// Binary Tree``    ``static` `Node buildPerfectBT_helper(``int` `preStart, ``int` `preEnd, ``int``[] pre)``    ``{``        ``// If preStart > preEnd return NULL``        ``if` `(preStart > preEnd)``            ``return` `null``;`` ` `        ``// Initialize root as pre[preStart]``        ``Node root = getNewNode(pre[preStart]);`` ` `        ``// If the only node is left,``        ``// then return node``        ``if` `(preStart == preEnd)``            ``return` `root;`` ` `        ``// Parameters for further recursion``        ``int` `leftPreStart = preStart + 1;``        ``int` `rightPreStart = leftPreStart + (preEnd - leftPreStart + 1) / 2;``        ``int` `leftPreEnd = rightPreStart - 1;``        ``int` `rightPreEnd = preEnd;`` ` `        ``// Recursive Call to build the``        ``// subtree of root node``        ``root.left = buildPerfectBT_helper(``            ``leftPreStart, leftPreEnd, pre);`` ` `        ``root.right = buildPerfectBT_helper(``            ``rightPreStart, rightPreEnd, pre);`` ` `        ``// Return the created root``        ``return` `root;``    ``}`` ` `    ``// Function to build Perfect Binary Tree``    ``static` `Node buildPerfectBT(``int``[] pre, ``int` `size)``    ``{``        ``return` `buildPerfectBT_helper(0, size - 1, pre);``    ``}`` ` `    ``// Function to print the Inorder of``    ``// the given Tree``    ``static` `void` `printInorder(Node root)``    ``{``        ``// Base Case``        ``if` `(root == ``null``)``            ``return``;`` ` `        ``// Left Recursive Call``        ``printInorder(root.left);`` ` `        ``// Print the data``        ``Console.Write(root.data + ``" "``);`` ` `        ``// Right Recursive Call``        ``printInorder(root.right);``    ``}``    ` `  ``static` `void` `Main() {``    ``int``[] pre = { 1, 2, 4, 5, 3, 6, 7 };``    ``int` `N = pre.Length;`` ` `    ``// Function Call``    ``Node root = buildPerfectBT(pre, N);`` ` `    ``// Print Inorder Traversal``    ``Console.Write(``"Inorder traversal of the tree: "``);``    ``printInorder(root);``  ``}``}` `// This code is contributed by mukesh07.`

## Javascript

 ``
Output:
`Inorder traversal of the tree: 4 2 5 1 6 3 7`

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up