# Construct Full Binary Tree using its Preorder traversal and Preorder traversal of its mirror tree

Last Updated : 18 Sep, 2023

Given two arrays that represent Preorder traversals of a full binary tree and its mirror tree, we need to write a program to construct the binary tree using these two Preorder traversals.
A Full Binary Tree is a binary tree where every node has either 0 or 2 children.

Note: It is not possible to construct a general binary tree using these two traversals. But we can create a full binary tree using the above traversals without any ambiguity. For more details refer to this article.

Examples:

```Input :  preOrder[] = {1,2,4,5,3,6,7}
preOrderMirror[] = {1,3,7,6,2,5,4}

Output :          1
/    \
2      3
/   \   /  \
4     5 6    7```
• Method 1: Let us consider the two given arrays as preOrder[] = {1, 2, 4, 5, 3, 6, 7} and preOrderMirror[] = {1 ,3 ,7 ,6 ,2 ,5 ,4}.
In both preOrder[] and preOrderMirror[], the leftmost element is root of tree. Since the tree is full and array size is more than 1. The value next to 1 in preOrder[], must be left child of the root and value next to 1 in preOrderMirror[] must be right child of root. So we know 1 is root and 2 is left child and 3 is the right child. How to find the all nodes in left subtree? We know 2 is root of all nodes in left subtree and 3 is root of all nodes in right subtree. All nodes from and 2 in preOrderMirror[] must be in left subtree of root node 1 and all node after 3 and before 2 in preOrderMirror[] must be in right subtree of root node 1. Now we know 1 is root, elements {2, 5, 4} are in left subtree, and the elements {3, 7, 6} are in the right subtree.
```           1
/    \
/      \
{2,5,4}  {3,7,6}```
• We will recursively follow the above approach and get the below tree:
```                  1
/    \
2      3
/   \   /  \
4     5 6    7```

Below is the implementation of above approach:

## C++

 `// C++ program to construct full binary tree ` `// using its preorder traversal and preorder ` `// traversal of its mirror tree ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// A Binary Tree Node ` `struct` `Node ` `{ ` `    ``int` `data; ` `    ``struct` `Node *left, *right; ` `}; ` ` `  `// Utility function to create a new tree node ` `Node* newNode(``int` `data) ` `{ ` `    ``Node *temp = ``new` `Node; ` `    ``temp->data = data; ` `    ``temp->left = temp->right = NULL; ` `    ``return` `temp; ` `} ` ` `  `// A utility function to print inorder traversal  ` `// of a Binary Tree ` `void` `printInorder(Node* node) ` `{ ` `    ``if` `(node == NULL) ` `        ``return``; ` ` `  `    ``printInorder(node->left); ` `    ``printf``(``"%d "``, node->data); ` `    ``printInorder(node->right); ` `} ` ` `  `// A recursive function to construct Full binary tree ` `//  from pre[] and preM[]. preIndex is used to keep  ` `// track of index in pre[]. l is low index and h is high  ` `//index for the current subarray in preM[] ` `Node* constructBinaryTreeUtil(``int` `pre[], ``int` `preM[], ` `                    ``int` `&preIndex, ``int` `l,``int` `h,``int` `size) ` `{     ` `    ``// Base case ` `    ``if` `(preIndex >= size || l > h) ` `        ``return` `NULL; ` ` `  `    ``// The first node in preorder traversal is root.  ` `    ``// So take the node at preIndex from preorder and  ` `    ``// make it root, and increment preIndex ` `    ``Node* root = newNode(pre[preIndex]); ` `        ``++(preIndex); ` ` `  `    ``// If the current subarray has only one element,  ` `    ``// no need to recur ` `    ``if` `(l == h) ` `        ``return` `root; ` `     `  `    ``// Search the next element of pre[] in preM[] ` `    ``int` `i; ` `    ``for` `(i = l; i <= h; ++i) ` `        ``if` `(pre[preIndex] == preM[i]) ` `            ``break``; ` ` `  `    ``// construct left and right subtrees recursively     ` `    ``if` `(i <= h) ` `    ``{ ` `        ``root->left = constructBinaryTreeUtil (pre, preM,  ` `                                    ``preIndex, i, h, size); ` `        ``root->right = constructBinaryTreeUtil (pre, preM,  ` `                                 ``preIndex, l+1, i-1, size); ` `    ``} ` `  `  `     ``// return root ` `    ``return` `root;     ` `} ` ` `  `// function to construct full binary tree ` `// using its preorder traversal and preorder ` `// traversal of its mirror tree ` `void` `constructBinaryTree(Node* root,``int` `pre[], ` `                        ``int` `preMirror[], ``int` `size) ` `{ ` `    ``int` `preIndex = 0; ` `    ``int` `preMIndex = 0; ` ` `  `    ``root =  constructBinaryTreeUtil(pre,preMirror, ` `                            ``preIndex,0,size-1,size); ` ` `  `    ``printInorder(root); ` `} ` ` `  `// Driver program to test above functions ` `int` `main() ` `{ ` `    ``int` `preOrder[] = {1,2,4,5,3,6,7}; ` `    ``int` `preOrderMirror[] = {1,3,7,6,2,5,4}; ` ` `  `    ``int` `size = ``sizeof``(preOrder)/``sizeof``(preOrder[0]); ` ` `  `    ``Node* root = ``new` `Node;  ` ` `  `    ``constructBinaryTree(root,preOrder,preOrderMirror,size); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to construct full binary tree  ` `// using its preorder traversal and preorder  ` `// traversal of its mirror tree  ` `class` `GFG ` `{ ` ` `  `// A Binary Tree Node  ` `static` `class` `Node  ` `{  ` `    ``int` `data;  ` `    ``Node left, right;  ` `};  ` `static` `class` `INT ` `{ ` `    ``int` `a; ` `    ``INT(``int` `a){``this``.a=a;} ` `} ` ` `  `// Utility function to create a new tree node  ` `static` `Node newNode(``int` `data)  ` `{  ` `    ``Node temp = ``new` `Node();  ` `    ``temp.data = data;  ` `    ``temp.left = temp.right = ``null``;  ` `    ``return` `temp;  ` `}  ` ` `  `// A utility function to print inorder traversal  ` `// of a Binary Tree  ` `static` `void` `printInorder(Node node)  ` `{  ` `    ``if` `(node == ``null``)  ` `        ``return``;  ` ` `  `    ``printInorder(node.left);  ` `    ``System.out.printf(``"%d "``, node.data);  ` `    ``printInorder(node.right);  ` `}  ` ` `  `// A recursive function to construct Full binary tree  ` `// from pre[] and preM[]. preIndex is used to keep  ` `// track of index in pre[]. l is low index and h is high  ` `//index for the current subarray in preM[]  ` `static` `Node conBinaryTreeUtil(``int` `pre[], ``int` `preM[],  ` `                    ``INT preIndex, ``int` `l, ``int` `h, ``int` `size)  ` `{  ` `    ``// Base case  ` `    ``if` `(preIndex.a >= size || l > h)  ` `        ``return` `null``;  ` ` `  `    ``// The first node in preorder traversal is root.  ` `    ``// So take the node at preIndex from preorder and  ` `    ``// make it root, and increment preIndex  ` `    ``Node root = newNode(pre[preIndex.a]);  ` `        ``++(preIndex.a);  ` ` `  `    ``// If the current subarray has only one element,  ` `    ``// no need to recur  ` `    ``if` `(l == h)  ` `        ``return` `root;  ` `     `  `    ``// Search the next element of pre[] in preM[]  ` `    ``int` `i;  ` `    ``for` `(i = l; i <= h; ++i)  ` `        ``if` `(pre[preIndex.a] == preM[i])  ` `            ``break``;  ` ` `  `    ``// construct left and right subtrees recursively  ` `    ``if` `(i <= h)  ` `    ``{  ` `        ``root.left = conBinaryTreeUtil (pre, preM,  ` `                                    ``preIndex, i, h, size);  ` `        ``root.right = conBinaryTreeUtil (pre, preM,  ` `                                ``preIndex, l + ``1``, i - ``1``, size);  ` `    ``}  ` ` `  `    ``// return root  ` `    ``return` `root;      ` `}  ` ` `  `// function to construct full binary tree  ` `// using its preorder traversal and preorder  ` `// traversal of its mirror tree  ` `static` `void` `conBinaryTree(Node root,``int` `pre[],  ` `                        ``int` `preMirror[], ``int` `size)  ` `{  ` `    ``INT preIndex = ``new` `INT(``0``);  ` `    ``int` `preMIndex = ``0``;  ` ` `  `    ``root = conBinaryTreeUtil(pre,preMirror,  ` `                            ``preIndex, ``0``, size - ``1``, size);  ` ` `  `    ``printInorder(root);  ` `}  ` ` `  `// Driver code ` `public` `static` `void` `main(String args[]) ` `{  ` `    ``int` `preOrder[] = {``1``,``2``,``4``,``5``,``3``,``6``,``7``};  ` `    ``int` `preOrderMirror[] = {``1``,``3``,``7``,``6``,``2``,``5``,``4``};  ` ` `  `    ``int` `size = preOrder.length;  ` ` `  `    ``Node root = ``new` `Node();  ` ` `  `    ``conBinaryTree(root,preOrder,preOrderMirror,size);  ` `}  ` `}  ` ` `  `// This code is contributed by Arnab Kundu `

## Python3

 `# Python3 program to construct full binary  ` `# tree using its preorder traversal and  ` `# preorder traversal of its mirror tree  ` ` `  `# Utility function to create a new tree node  ` `class` `newNode: ` `    ``def` `__init__(``self``,data): ` `        ``self``.data ``=` `data ` `        ``self``.left ``=` `self``.right ``=` `None` ` `  `# A utility function to print inorder ` `# traversal of a Binary Tree  ` `def` `printInorder(node):  ` `    ``if` `(node ``=``=` `None``) : ` `        ``return` `    ``printInorder(node.left)  ` `    ``print``(node.data, end ``=` `" "``)  ` `    ``printInorder(node.right)  ` ` `  `# A recursive function to construct Full   ` `# binary tree from pre[] and preM[].  ` `# preIndex is used to keep track of index  ` `# in pre[]. l is low index and h is high  ` `# index for the current subarray in preM[]  ` `def` `constructBinaryTreeUtil(pre, preM, preIndex, ` `                                    ``l, h, size):  ` `    ``# Base case  ` `    ``if` `(preIndex >``=` `size ``or` `l > h) : ` `        ``return` `None` `, preIndex ` ` `  `    ``# The first node in preorder traversal   ` `    ``# is root. So take the node at preIndex  ` `    ``# from preorder and make it root, and  ` `    ``# increment preIndex  ` `    ``root ``=` `newNode(pre[preIndex])  ` `    ``preIndex ``+``=` `1` ` `  `    ``# If the current subarray has only  ` `    ``# one element, no need to recur  ` `    ``if` `(l ``=``=` `h):  ` `        ``return` `root, preIndex ` ` `  `    ``# Search the next element of  ` `    ``# pre[] in preM[] ` `    ``i ``=` `0` `    ``for` `i ``in` `range``(l, h ``+` `1``):  ` `        ``if` `(pre[preIndex] ``=``=` `preM[i]):  ` `                ``break` ` `  `    ``# construct left and right subtrees ` `    ``# recursively  ` `    ``if` `(i <``=` `h):  ` ` `  `        ``root.left, preIndex ``=` `constructBinaryTreeUtil(pre, preM, preIndex, ` `                                                               ``i, h, size)  ` `        ``root.right, preIndex ``=` `constructBinaryTreeUtil(pre, preM, preIndex,  ` `                                                       ``l ``+` `1``, i ``-` `1``, size)  ` ` `  `    ``# return root  ` `    ``return` `root, preIndex ` ` `  `# function to construct full binary tree  ` `# using its preorder traversal and preorder  ` `# traversal of its mirror tree ` `def` `constructBinaryTree(root, pre, preMirror, size):  ` ` `  `    ``preIndex ``=` `0` `    ``preMIndex ``=` `0` ` `  `    ``root, x ``=` `constructBinaryTreeUtil(pre, preMirror, preIndex,  ` `                                             ``0``, size ``-` `1``, size)  ` ` `  `    ``Print` `Inorder(root)  ` ` `  `# Driver code  ` `if` `__name__ ``=``=``"__main__"``: ` ` `  `    ``preOrder ``=` `[``1``, ``2``, ``4``, ``5``, ``3``, ``6``, ``7``] ` `    ``preOrderMirror ``=` `[``1``, ``3``, ``7``, ``6``, ``2``, ``5``, ``4``] ` ` `  `    ``size ``=` `7` `    ``root ``=` `newNode(``0``)  ` ` `  `    ``constructBinaryTree(root, preOrder,  ` `                        ``preOrderMirror, size)  ` ` `  `# This code is contributed by ` `# Shubham Singh(SHUBHAMSINGH10) `

## C#

 `// C# program to construct full binary tree  ` `// using its preorder traversal and preorder  ` `// traversal of its mirror tree  ` `using` `System; ` `     `  `class` `GFG ` `{ ` ` `  `// A Binary Tree Node  ` `public` `class` `Node  ` `{  ` `    ``public` `int` `data;  ` `    ``public` `Node left, right;  ` `};  ` `public` `class` `INT ` `{ ` `    ``public` `int` `a; ` `    ``public` `INT(``int` `a){``this``.a=a;} ` `} ` ` `  `// Utility function to create a new tree node  ` `static` `Node newNode(``int` `data)  ` `{  ` `    ``Node temp = ``new` `Node();  ` `    ``temp.data = data;  ` `    ``temp.left = temp.right = ``null``;  ` `    ``return` `temp;  ` `}  ` ` `  `// A utility function to print inorder traversal  ` `// of a Binary Tree  ` `static` `void` `printInorder(Node node)  ` `{  ` `    ``if` `(node == ``null``)  ` `        ``return``;  ` ` `  `    ``printInorder(node.left);  ` `    ``Console.Write(``"{0} "``, node.data);  ` `    ``printInorder(node.right);  ` `}  ` ` `  `// A recursive function to construct Full binary tree  ` `// from pre[] and preM[]. preIndex is used to keep  ` `// track of index in pre[]. l is low index and h is high  ` `//index for the current subarray in preM[]  ` `static` `Node conBinaryTreeUtil(``int` `[]pre, ``int` `[]preM,  ` `                    ``INT preIndex, ``int` `l, ``int` `h, ``int` `size)  ` `{  ` `    ``// Base case  ` `    ``if` `(preIndex.a >= size || l > h)  ` `        ``return` `null``;  ` ` `  `    ``// The first node in preorder traversal is root.  ` `    ``// So take the node at preIndex from preorder and  ` `    ``// make it root, and increment preIndex  ` `    ``Node root = newNode(pre[preIndex.a]);  ` `        ``++(preIndex.a);  ` ` `  `    ``// If the current subarray has only one element,  ` `    ``// no need to recur  ` `    ``if` `(l == h)  ` `        ``return` `root;  ` `     `  `    ``// Search the next element of pre[] in preM[]  ` `    ``int` `i;  ` `    ``for` `(i = l; i <= h; ++i)  ` `        ``if` `(pre[preIndex.a] == preM[i])  ` `            ``break``;  ` ` `  `    ``// construct left and right subtrees recursively  ` `    ``if` `(i <= h)  ` `    ``{  ` `        ``root.left = conBinaryTreeUtil (pre, preM,  ` `                                    ``preIndex, i, h, size);  ` `        ``root.right = conBinaryTreeUtil (pre, preM,  ` `                                ``preIndex, l + 1, i - 1, size);  ` `    ``}  ` ` `  `    ``// return root  ` `    ``return` `root;      ` `}  ` ` `  `// function to construct full binary tree  ` `// using its preorder traversal and preorder  ` `// traversal of its mirror tree  ` `static` `void` `conBinaryTree(Node root,``int` `[]pre,  ` `                        ``int` `[]preMirror, ``int` `size)  ` `{  ` `    ``INT preIndex = ``new` `INT(0);  ` `    ``int` `preMIndex = 0;  ` ` `  `    ``root = conBinaryTreeUtil(pre,preMirror,  ` `                            ``preIndex, 0, size - 1, size);  ` ` `  `    ``printInorder(root);  ` `}  ` ` `  `// Driver code ` `public` `static` `void` `Main(String []args) ` `{  ` `    ``int` `[]preOrder = {1,2,4,5,3,6,7};  ` `    ``int` `[]preOrderMirror = {1,3,7,6,2,5,4};  ` ` `  `    ``int` `size = preOrder.Length;  ` ` `  `    ``Node root = ``new` `Node();  ` ` `  `    ``conBinaryTree(root,preOrder,preOrderMirror,size);  ` `}  ` `} ` ` `  `/* This code is contributed by PrinciRaj1992 */`

## Javascript

 ` `

Output

`4 2 5 1 6 3 7 `

Time Complexity: O(n^2)
Auxiliary Space: O(n), The extra space is used due to the recursion call stack

• Method 2: If we observe carefully, then the reverse of the Preorder traversal of the mirror tree will be the Postorder traversal of the original tree. We can construct the tree from given Preorder and Postorder traversals in a similar manner as above. You can refer to this article on how to Construct a Full Binary Tree from given preorder and postorder traversals.

Previous
Next